170/2025

Question Booklet Alpha Code

Question Booklet Serial Number

Total No. of questions: 100 Time: 1 Hour 30 Minutes

Maximum: 100 Marks

INSTRUCTIONS TO CANDIDATES

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. A, B, C & D.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball-Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

170/2025

Maximum: 100 marks

Time: 1 hour and 30 minutes

1. Sum of Eigen values of $\begin{bmatrix} 3 & 2 & 4 \\ 0 & 2 & 7 \\ 0 & 0 & 5 \end{bmatrix}$ is:

(A) 5

(B) 6

(C) 10

(D) 8

2. What is the value of k, the system of equations x + y + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 have a non trivial solution?

(A) 3

(B) 10

(C) 4

(D) 8

3. The Area of the region bounded by the curves $y^2 = y - x$ and x + y = 0 is:

(A) $\frac{8}{3}$

(B) $\frac{4}{3}$

(C) $\frac{2}{3}$

(D) $\frac{1}{3}$

4. The general solution of the differential equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$ is:

(A) $y = (A + Bx)e^{2x}$

(B) $y = (A + Bx)e^{-2x}$

(C) $y = (A\cos 2x + B\sin 2x)$

(D) $y = (A\cos 2x - B\sin 2x)$

5. What is the value of $\frac{\partial w}{\partial v}$ when u = 0, v = 0 if $w = x^2 + \frac{y}{x}hx = u - 2v + 1$ and y = 2u + v - 2?

(A) 9

(B) −1

(C) -2

(D) 8

6. The general solution of the differential equation $x^2y''-7xy'+16y=0$ is :

 $(A) y(x) = C_1 e^{4x}$

(B) $y(x) = C_1 x^{-4} + C_2 x^{-4} \ln x$

(C) $y(x) = C_1 e^{4x} + C_2 x e^{4x}$

(D) $y(x) = C_1 x^4 + C_2 x^4 \ln x$

7.	Solution o	of $\frac{\partial^2 x}{\partial x \partial y} = x^2 y$ subject to the condition z	(x,0) =	$= x^2 \text{ and } z(1, y) = \cos y \text{ is :}$	
	(A)	$z = \cos y + x^2$	(B)	$z = \cos y + x^2 y$	
	(C)	$z = \frac{1}{6}x^3y^2 + \cos y - \frac{1}{6}y^2 - 1 + x^2$	(D)	$z = \frac{1}{6}x^3y^2 + \sin y - \frac{1}{6}y^2 + x^2$	
8.	The order	of convergence of Newton Raphson me	ethod i	s:	
	(A)	0	(B)	1	
	(C)	2	(D)	3	
9.	Newton-G	regory Forward interpolation formula	can be	e used :	
	(A)	only for unequally spaced intervals			
	(B)	only for equally spaced intervals			
	(C)	for both equally and unequally space	d inter	rvals	
	(D)	for unequally intervals			
10.	A wirefra	me model represents a solid using :			
	(A)	Faces only	(B)	Curves and points only	
	(C)	Surface with normals	(D)	Edges, vertices and curves	
11.	For a screw jack with mean radius r, pitch p and friction coefficient μ , the efficiency				
	increases	when:			
	(A)	μ increases	(B)	p decreases	
	(C)	friction angle ϕ decreases	(D)	helix angle α decreases	
12.	A wedge i	s pushed under a block very slowly, Th	e bloc	k moves up.	
	Friction o	n the block from the wedge is:			
	(A)	Up the plane	(B)	Down the plane	
	(C)	Horizontal	(D)	Zero	
13.	For V-belt	t drives, the frictional holding capacity	increa	ases due to :	
	(A)	Pulley diameter	(B)	Groove angle	
	(C)	Belt speed	(D)	Belt thickness	
14.	The load t	corque in an electrical drive generally :			
	(A)	Always remains constant			
	(B)	Depends only on speed			
	(C)	Depends on speed and load nature			
	(D)	Its independent of speed			

15.	ror an inc	auction motor arive, slip becomes nega	itive ai	aring:
	(A)	Starting	(B)	Plugging
	(C)	Regenerative braking	(D)	Motoring
16.		trifugal pump operating at constant s nead developed increases approximate	_	f impeller diameter is increased by
	(A)	10%	(B)	21%
	(C)	33%	(D)	46%
17.	Hydraulio	e efficiency is connected with:		
	(A)	Leakage losses		
	(B)	Bearing losses		
	(C)	Electrical		
	(D)	Losses Impeller friction and eddy los	sses	
18.	Compared	l to centrifugal pumps, screw pumps h	ave:	
	(A)	Much lower NPSH_required	(B)	Much higher NPSH_required
	(C)	Same NPSH_required	(D)	No cavitation issues
19.	Which mo	otion profile gives zero jerk start and e	nd?	
	(A)	Simple harmonic motion		
	(B)	Constant acceleration-deceleration		
	(C)	Cycloidal motion		
	(D)	Uniform motion		
20.	High-perf	formance crankshafts are typically :		
	(A)	Forged medium-carbon steel	(B)	Nodular (spheroidal) cast iron
	(C)	Cast iron	(D)	Bronze alloy
21.	For a cent	crifugal pump, the head-discharge cur	ve typi	cally is:
	(A)	Head increases with discharge		
	(B)	Head decreases with discharge		
	(C)	Head remains constant with dischar	ge	
	(D)	Head first increases then decreases		
22.	The slope	of a system curve is proportional to:		
	(A)	Q	(B)	Q^2
	(C)	1/Q	(D)	$1/\mathrm{Q}^2$
23.	For a pun	np running at constant diameter, dou	bling t	he RPM will change the developed
	(A)	2 times	(B)	4 times
	(C)	8 times	(D)	16 times

24.	A fan load	l has torque proportional to :		
	(A)	Constant torque	(B)	$T\!\!\sim\!\omega^2$
	(C)	$T \sim \omega^3$	(D)	$T\!\! \sim \!\! \omega$
25.	For a DC	shunt motor, the natural speed-toro	que curve	is:
	(A)	Nearly horizontal	(B)	Steeply rising
	(C)	Parabolic	(D)	Hyperbolic
26.	Reynolds	number is represented as the ratio	of inertia	force to:
	(A)	Pressure force	(B)	Viscous force
	(C)	Gravity force	(D)	Surface tension force
27.		compressible viscous flow between gradient is:	parallel p	lates, the velocity distribution due
	(A)	Linear	(B)	Parabolic
	(C)	Logarithmic	(D)	Exponential
28.	The mome	entum equation for a control volume	e is based	on:
	(A)	Conservation of energy	(B)	Conservation of mass
	(C)	Newton's second law of motion	(D)	First law of thermodynamics
29.	For irrota	tional flow, the vorticity is :		
	(A)	Zero	(B)	Constant
	(C)	Infinite	(D)	Equal to velocity
30.	The veloci	ty potential function φ satisfies whi	ich of the	following equations?
	(A)	Poisson's equation	(B)	Laplace's equation
	(C)	Navier-Stokes equation	(D)	Bernoulli's equation
31.	The CGS	unit of kinematic viscosity is :		
	(A)	Poise	(B)	Pascal-second
	(C)	Stoke	(D)	N-m ² /kg
32.	Bernoulli'	s equation is derived from :		
	(A)	Newton's first law	(B)	Law of momentum conservation
	(C)	Law of mass conservation	(D)	Law of energy conservation
33.	For a fille	t weld subjected to transverse loadi	ng, the m	aximum stress occurs :
	(A)	At the toe of the weld	(B)	At the throat section
	(C)	At the weld root	(D)	Along the weld leg

34.	The sum of	The sum of pressure head and potential head is termed as:			
	(A)	datum head	(B)	velocity head	
	(C)	piezometric head	(D)	static head	
35.	The throa	t thickness of a fillet weld is :			
	(A)	Equal to the leg length	(B)	0.707 times the leg length	
	(C)	1.414 times the leg length	(D)	Half the leg length	
36.	The maxi	mum shear stress theory is also	called :		
	(A)	Rankine theory	(B)	Mohr's theory	
	(C)	Von Mises theory	(D)	Tresca theory	
37.	The modu	llus of resilience is the area unde	er the stress-	strain curve up to :	
	(A)	Yield point	(B)	Ultimate point	
	(C)	Fracture point	(D)	Proportional point	
38.	The abilit	y of a material to absorb energy	up to fractur	e is:	
	(A)	Hardness	(B)	Toughness	
	(C)	Ductility	(D)	Resilience	
39.	The shear	force at the supports of a simply	y supported b	peam with a central point load is:	
	(A)	zero	(B)	Maximum	
	(C)	Half the load	(D)	Equal to the load	
40.	The SI un	it of stress is :			
	(A)	N	(B)	N/m	
	(C)	N/m^2	(D)	kg/m^3	
41.	A ternary	kinematic link is defined as:			
	(A)	A link with three turning pairs	3		
	(B)	A link which has three degrees	of freedom		
	(C)	A link that can rotate about th	ree mutually	perpendicular axes	
	(D)	None of the above			
42.	A higher l	kinematic pair is formed when:			
	(A)	The pair has a surface contact	between link	s	
	(B)	The pair has a point or line cor	ntact betweer	ı links	
	(C)	The pair has no contact between	en links		
	(D)	None of the above			

43.	43. Equation of motion for a spring mass system with mass m and spring stiffness k			s m and spring stiffness k is :		
	(A)	$m\ddot{x} - kx = 0$	(B)	$m\ddot{x} + cx = 0$		
	(C)	$m\ddot{x} + kx = 0$	(D)	$m\ddot{x} - cx = 0$		
44.	Grashaf's	law determines:				
	(A) The type of motion in a cam mechanism					
	(B)	The feasibility of crank rotation in	n a four-ba	ar chain		
	(C)	The speed ratio of gears				
	(D)	The efficiency of a linkage				
45.		e of movement of follower passes s known as:	through t	he centre of rotation of cam such		
	(A)	Conjugate follower	(B)	Oscillating follower		
	(C)	Roller follower	(D)	Radial follower		
46.	When a series of gears are connected in such a way that two or more gears rotate about an axis with same angular velocity, it is known as:					
	(A)	Compound gear train	(B)	Planetary gear train		
	(C)	Simple gear train	(D)	Epicyclic gear train		
47.	Static bal	ancing requires :				
	(A)	Balancing forces only	(B)	Balancing couples only		
	(C)	Balancing forces and couples	(D)	None of the above		
48.	The lengt	h of stroke in shaper can be adjuste	d by:			
	(A)	Pawl and ratchet mechanism	(B)	Indexing mechanism		
	(C)	Sliding block in bull gear	(D)	All of the above		
49.	Simple in	dexing is also called :				
	(A)	Direct Indexing	(B)	Plain Indexing		
	(C)	Rapid Indexing	(D)	None of the above		
50.	The half-r	nut mechanism in lathe is essential	for:			
	(A)	Taper turning	(B)	Facing		
	(C)	Drilling	(D)	Thread cutting		
51.	G/R ratio	in material science is related to:				
	(A)	Morphology of solidifying materia	1			
	(B)	Plasticity of material in mechanic	al forming			
	(C)	Isotropic and anisotropic behaviou	ır of a ma	terial		
	(D)	Degree of cold working done on a	material			

52 .			e of the following serve as reservoirs essary to prevent porosity due to shrink		
	111000	(A)	Runner	(B)	Riser
		(C)	Sprue	(D)	Gate
53.		ng th	ne following metals, which one shown?	ws m	aximum volumetric solidification
		(A)	Magnesium	(B)	Copper
		(C)	Aluminium	(D)	Zinc
54.	Proc	ess of	removing dissolved gases from molten	meta	1:
		(A)	Peeling	(B)	Purging
		(C)	Fettling	(D)	Clogging
55.	Draf	t in a	rolling process:		
		(A)	increases with coefficient of friction be roll radius	etwee	n roll and strip, but decreases with
		(B)	increases with roll radius, but decreared roll and strip	ases v	with coefficient of friction between
		(C)	decreases with both coefficient of roll radius	fricti	ion between roll and strip and
		(D)	increases with both coefficient of roll radius	fricti	on between roll and strip and
56.	Whic	ch one	e among the following is/are true with r	espec	t to spreading in rolling process?
	(i)		eading is seen in rolling plates and shee		
	(ii)	_	eading is characterised by width of the	ne sti	rip remaining effectively constant
	(iii)	Spre	eading increases with increase in frictio	n bet	ween roll and strip.
		(A)	(i), (ii), (iii)	(B)	Only (ii)
		(C)	Only (iii)	(D)	Only (i) and (iii)
57.	Barr	elling	g effect is seen in forging when:		
		(A)	upsetting hot workpieces between colo	dies	
		(B)	resistance to deformation remains s	ame	at top, bottom and centre of the
			material being forged		
		(C)	upsetting is done using proper lubrica	nt	
		(D)	frictional forces that oppose the out interfaces are reduced	ward	flow of the workpiece at the die

58.		Process of indenting (but not breaking through) the surface of a workpiece with a punch				
	in or		produce a cavity or an impression is ca			
		(A)	Hubbing	(B)	Heading	
		(C)	Piercing	(D)	Swaging	
59 .	Britt	tle ma	terials can be successfully extruded by	:		
		(A)	Impact extrusion	(B)	Cold extrusion	
		(C)	Hydrostatic extrusion	(D)	Coaxial extrusion	
60.		•	d without friction, the maximum possing a drawing process for a perfectly plas		_	
		(A)	31%	(B)	43%	
		(C)	56%	(D)	63%	
61.	For	straig	ht polarity arc welding, which of the fol	lowin	g is/are correct?	
	(i)	the v	workpiece is positive and the electrode i	s neg	ative	
	(ii)	weld	penetration is deep			
	(iii)	weld	s are narrow			
		(A)	All are correct			
		(B)	Only (i) and (ii) are correct			
		(C)	Only (i) and (iii) are correct			
		(D)	Only (ii) and (iii) are correct			
62.		_	way of the base metal and the consequences or notch result in:	ient g	eneration of a groove in the shape	
		(A)	Undercutting	(B)	Underfilling	
		(C)	Lamellar tears	(D)	Incomplete penetration	
63.			to reduce brittleness and reduce residure subjected to :	dual	stresses, steels hardened by heat	
		(A)	annealing	(B)	normalising	
		(C)	tempering	(D)	quenching	
64.			making an existing hole dimensionally one and to improve its surface finish:	y mor	e accurate that can be achieved by	
		(A)	Centering	(B)	Boring	
		(C)	Reaming	(D)	Countersinking	

65.	Which component of the lathe is used to move the tool radially in and out and to control its radial position?				
	(A)	Tool post	(B)	Apron	
	(C)	Lead screw	(D)	Cross slide	
66.		ngle-point cutting tool, ttle materials?	which of the foll	owing rake is used for cutting	
	(A)	Negative rake	(B)	Zero rake	
	(C)	Positive rake	(D)	Infinite rake	
67.	Which of grinding v	~ -	used for achieving t	the sharpness and trueness of the	
	(A)	Balancing	(B)	Guarding	
	(C)	Dressing	(D)	Mounting	
68.	In a grin	ding wheel marking sy	stem, which of the	following is the type-c abrasive	
	(A)	Aluminium oxide	(B)	Silicon carbide	
	(C)	Zirconia alumina	(D)	None of the above	
69.	Which of	the following milling cutt	er is NOT an arbor-	mount type?	
	(A)	Cylindrical cutter	(B)	End-mill cutter	
	(C)	Angle-mill cutter	(D)	Straddle milling cutter	
70.		ng machine, which of the cele diameter?	following device is u	used for machining holes spaced on	
	(A)	Vice	(B)	Dividing head	
	(C)	Clamp	(D)	Rotary table	
71.	In a drilli	ng process, the chips are	guided upward thro	ugh spiral grooves called :	
	(A)	Web	(B)	Land	
	(C)	Flute	(D)	Shank	
72.	In a pull-t	type internal broach, the	cutting teeth near tl	he shank of the tool is :	
	(A)	Roughening teeth	(B)	Semi-finishing teeth	
	(C)	Finishing teeth	(D)	None of the above	
73.	The prope	erty of tool materials agai	nst wear due to inte	nse temperature and pressure is:	
	(A)	Red Hardness	(B)	Abrasion Resistance	
	(C)	Toughness	(D)	Chipping	

170/	2025	12		\mathbf{A}
	(C)	Permeability	(D)	Reusability
	(A)	Thermal stability	(B)	Collapsibility
82.	The prope is called:	erty of molding sand to allow hot air	r and ga	ses to pass through the mold wall
	(C)	Pilot	(D)	Stopper
	(A)	Puller	(B)	Stripper
		e upward stroke?	(D)	a. ·
81.		the following is used to prevent the	lifting o	f sheetmetal along with the punch
	(C)	Cutting force	(D)	Blank size
	(A)	Scrap	(B)	Stroke length
80.	Beveling o	of the punch and die surfaces in shee	t metal o	operation is to reduce :
	(C)	Punching	(D)	Shaving
	(A)	Nibbling	(B)	Slitting
	is called:			
79.	The proce	ess of removing extra materials fro	om the s	sheared edges of the sheet metal
	(C)	Cupping	(D)	Bottoming
	(A)	Flashing	(B)	Beading
78.	Which of operation:	the following method is used for c	compense	ating "springback" in sheet metal
	` ,	C	, ,	-
	(A) (C)	Perforating Notching	(B) (D)	Parting Lancing
77.	-	tion performed for punching pattern		
	` ,	_	, ,	
	(C)	Progressive Die	(D)	Combination Die
	single stat (A)	Simple Die	(B)	Compound Die
76.		pe of press working dies are used	for per	forming multiple operations in a
	(C)	F = StL	(D)	F = tL/S
	(A)	F = SL/t	(B)	F = St/L
75.		the following formula is used for constrength, t = thickness, L = length)?		ng the cutting force of press tools
	(C)	Tooming	(D)	All of the above
	(A)	Type of forming operation Tooling	(B) (D)	Size and shape of dies All of the above
	metal pres		(D)	Cine and shows of disc
74.		the following factors are to be	consid	ered for the selection of sheet

In metal casting, which element in the gating system is used for compensating shrinkag during the solidification process?			
(A)	Runner	(B)	Sprue
(C)	Riser	(D)	Cavity
_		e design of lo	cators will reduce the degrees of
(A)	Zero	(B)	One
(C)	Two	(D)	Three
		the following is	s used for guiding the tool to the
(A)	Base plate	(B)	Drill bush
(C)	Body	(D)	Frame
NC conto	aring is an example of :		
(A)	incremental positioning	(B)	point-to-point positioning
(C)	absolute positioning	(D)	continuous path positioning
Which of	the following code will give cir-	cular interpola	tion in a clockwise direction?
(A)	G01	(B)	G02
(C)	G47	(D)	G56
What type	e of control system adjusts the	output based o	on the rate of change of the input?
(A)	Derivative control	(B)	Proportional control
(C)	Integral control	(D)	None of the above
Plotter ac	curacy is measured in terms o	f :	
(A)	Buffer size	(B)	Vertical dimension
(C)	Resolution	(D)	Intelligence
What is th	ne least count of Vernier calipe	ers?	
(A)	0.02	(B)	0.1
(C)	0.2	(D)	0.01
What is tl	ne use of 'No Go' gauges?		
(A)	Check roundness and size at	the same time	
(B)	Check location and size at th	ie same time	
(C)	Check several dimensions sin	multaneously	
(D)	Check a single element of a f	feature	
	during the (A) (C) The six-p freedom t (A) (C) In the de work piec (A) (C) NC conton (A) (C) Which of t (A) (C) What type (A) (C) Plotter ac (A) (C) What is th (A) (C) What is th (A) (C)	(A) Runner (C) Riser The six-point location principle in the freedom to: (A) Zero (C) Two In the design of a drill jig, which of twork piece? (A) Base plate (C) Body NC contouring is an example of: (A) incremental positioning (C) absolute positioning (C) absolute positioning Which of the following code will give circles (A) G01 (C) G47 What type of control system adjusts the (A) Derivative control (C) Integral control Plotter accuracy is measured in terms of (A) Buffer size (C) Resolution What is the least count of Vernier calipted (A) 0.02 (C) 0.2 What is the use of 'No Go' gauges? (A) Check roundness and size at the (C) Check several dimensions size	during the solidification process? (A) Runner (B) (C) Riser (D) The six-point location principle in the design of location freedom to: (A) Zero (B) (C) Two (D) In the design of a drill jig, which of the following is work piece? (A) Base plate (B) (C) Body (D) NC contouring is an example of: (A) incremental positioning (B) (C) absolute positioning (D) Which of the following code will give circular interpolation (A) G01 (B) (C) G47 (D) What type of control system adjusts the output based of (A) Derivative control (B) (C) Integral control (D) Plotter accuracy is measured in terms of: (A) Buffer size (B) (C) Resolution (D) What is the least count of Vernier calipers? (A) 0.02 (B) (C) 0.2 (D) What is the use of 'No Go' gauges? (A) Check roundness and size at the same time (B) Check location and size at the same time (C) Check several dimensions simultaneously

92 .	Process of	wringing in slip gauge is due to:		
	(A)	Vacuum	(B)	Air friction
	(C)	Molecular adhesion	(D)	Molecular cohesion
93.	What is th	ne range of bevel protractor?		
	(A)	0-360°	(B)	$0-90^{\circ}$
	(C)	$90-270^{\circ}$	(D)	0-180°
94.	Accurate by using:	centering of work mounted in	an indepe	endent chuck can be determined
	(A)	Surface gauge	(B)	Dial indicator
	(C)	Center gauge	(D)	Height gauge
95.	What is th	ne principle of 'Johannson Mikroka	ator'?	
	(A)	Principle of interference		
	(B)	Principle of transformer		
	(C)	Optical Magnification		
	(D)	Button spinning on a loop of stri	ng	
96.	Which of dynamom	_	asure of s	urface finish in Wallace Surface
	(A)	Length of swing	(B)	Angle of swing
	(C)	Time of swing	(D)	Height of swing
97.	A tolerano	ce diagram is also called :		
	(A)	Tier chart	(B)	Defect concentration diagram
	(C)	Scatter diagram	(D)	Histogram
98.	Which of t	the following is not the type of FM	S?	
	(A)	Flexible transfer lines	(B)	Flexible machining systems
	(C)	Flexible tool handling systems	(D)	Flexible manufacturing cells
99.		ve supply chain relationships once of both parties is a definition o		to enhance the overall business
	(A)	third-party logistics	(B)	relationship marketing
	(C)	supply chain collaboration	(D)	dovetailing
100.	Which of t	the following is mandatory in TQN	I to attain	customer satisfaction?
	(A)	Manager involvement	(B)	Total employee involvement
	(C)	Founder involvement	(D)	Relationship marketing

170/2025 14 A

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK