124/2015

Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	The total	number of atoms in 6 grams	of water is:		
	(A)	$6.02 imes 10^{23}$	(B)	$12.04 imes 10^{23}$	
	(C)	18.06×10^{23}	(D)	3.01×10^{23}	
2.	The perce	ntage of an element M is 53 in	n its oxide of m	olecular formula M ₂ O ₃ . It's atomic mass	
	(A)	36	(B)	27	
	(C)	18	(D)	23	
3.	The mass	of oxygen required for the con	mplete combus	tion of 2.5 grams of methane is:	
	(A)	20 g	(B)	15 g	
	(C)	1.5 g	(D)	10 g.	
4.		ic compound with vapour der Its molecular formula is:	nsity 28 on an	alysis gave 85.71% carbon and 14.29%	
	(A)	C_3H_8	(B)	C_3H_6	
	(C)	$\mathrm{C_4H_8}$	(D)	C_4H_{10}	
5.	The entha	alpy change for the reaction $\frac{1}{2}$	$X_2(g) \rightarrow X(g)i$	s called :	
	(A)	enthalpy of transition	(B)	enthalpy of atomization	
	(C)	enthalpy of vaporization	(D)	enthalpy of formation	
6.	Lattice en	ergy is the amount of energy	released:		
	(A)	when one cation combines w	rith one anion		
	(B) when one mole cations combines with one mole anion				
	(C)	when one mole of ionic comp	ound is formed	from its cations and anions	
	(D)	all of the above			
7.		equired to dissociate 4 gran at 25°C. The H – H bond energ		hydrogen into free gaseous atoms is	
	(A)	104 kcal	(B)	10.4 kcal	
	(C)	1040 kcal	(D)	1.04 kcal	
A			3		
				[P.T.O.]	

8.	The bond angles in molecules BeF ₂ , SF ₆ , CCl ₄ and NH ₃ are in the order:				
	(A)	$\mathrm{SF_6} < \mathrm{CCl_4} < \mathrm{NH_3} < \mathrm{BeF_2}$	(B)	$SF_6 < NH_3 < CCl_4 < BeF_2$	
	(C)	$\mathrm{NH_3} < \mathrm{SF_6} < \mathrm{CCl_4} < \mathrm{BeF_2}$	(D)	$\mathrm{NH_3} < \mathrm{CCl_4} < \mathrm{SF_6} < \mathrm{BeF_2}$	
9.	The mola NaOH is		ng 50 m	l of 0.40 M HCl and 50 ml of 0.20 M	
	(A)	0.20 M	(B)	0.10 M	
	(C)	0.01 M	(D)	0.02 M	
10.	In XeF ₆ n	nolecule, the hybridization of Xe ator	n is:		
	(A)	sp^3	(B)	sp ³ d	
	(C)	$\mathrm{sp}^3\mathrm{d}^3$	(D)	dsp^2	
11.	Isopropyl	bromide when treated with metallic	sodium	in ether gives :	
	(A)	n-Hexane	(B)	2, 2-Dimethyl propane	
	(C)	2-Methyl pentane	(D)	2, 3-Dimethyl butane	
12.	The gas li	berated at cathode during the electro	olysis of	sodium propionate is:	
	(A)	Hydrogen	(B)	Carbon dioxide	
	(C)	Ethane	(D)	n-Butane	
13.	But-1-ene	and 2 – Methyl propene illustrate:			
	(A)	Chain isomerism	(B)	Position isomerism	
	(C)	Metamerism	(D)	Functional isomerism	
14.	Ozonolysi	s of 2-Methyl-2-butene gives :			
	(A)	Acetone	(B)	Acetaldehyde	
	(C)	Glyoxal	(D)	Acetone and Acetaldehyde	
15.	The pair	which can be distinguished by ammo	niacal cu	aprous chloride solution is :	
	(A)	But-1-yne and Ethyne	(B)	But-1-yne and But-2-yne	
	(C)	Propyne and Ethyne	(D)	n-Butane and But-2-yne	
16.	The mono	mer of Orlon is:			
	(A)	$CH_2 = CF_2$	(B)	$CF_2 = CF_2$	
	(0)	CH - CH - CN	(D)	$CH_{-} = CH - CI$	

17.	Benzene	when treated with phosg	ene in presence of A	ICl ₃ gives:	111
	(A)	Benzaldehyde	(B)	Benzyl chloride	
	(C)	Benzophenone	(D)	Benzal chloride	
18.	Hydroxyl	ation of Alkenes can be e	ffected by:		
	(A)	Luca's Reagent	(B)	Baeyer's Reagent	
	(C)	Tollens Reagent	(D)	Borsche Reagent	
19.	Which of	the following acids has th	ne lowest pKa value'		
	(A)	Acetic acid	(B)	α -Chloro acetic acid	
	(C)	α -Nitro acetic acid	(D)	lpha -Cyano acetic acid	
20.		ersion of carboxylic acid of concentrated sulphuric		ne by reaction with hydraz	oic acid in
	(A)	Schmidt Reaction	(B)	Dakin Reaction	
	(C)	Perkin Reaction	(D)	Etard Reaction	
21.	Pyrolysis	of calcium acetate gives:			
	(A)	Formaldehyde	(B)	Acetaldehyde	
	(C)	Acetone	(D)	Acetic acid	
22.	Wolff-Kis	nner Reduction of acetopl	henone gives :		
	(A)	Toluene	(B)	Ethyl Benzene	
	(C)	Xylene	(D)	Cumene	
23.	Which of	the following compounds	can give Butan-2-ol	with CH ₃ MgBr?	
	(A)	H – CHO	(B)	$\mathrm{CH_3}-\mathrm{CHO}$	
	(C)	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CHO}$	(D)	$\mathrm{CH_3} - \mathrm{CO} - \mathrm{CH_3}$	
24.	The produ	ct obtained when an aldo	oxime is treated with	phosphorous pentoxide is :	
1	(A)	Alkane	(B)	Primary amine	
	(C)	Nitrile	(D)	Amide	
25.	The numb	er of bridging hydrogen a	atoms in Diborane is	:	
	(A)	2	(B)	4	
	(C)	3	(D)	6	•

26.	The half-l		tive element is 100 day	s. How long will it take for the decay of
	(A)	200 days	(B)	600 days
	(C)	300 days	. (D)	400 days
27.	The pH of	f a solution obtained b	y mixing 50 ml of 0.40	N HCl and 50 ml of 0.20 N NaOH is:
	(A)	3	(B)	2
	(C)	. 1	(D)	log 2
28.	Quantity	of electricity in coulor	mbs required to liberate	112 ml of H ₂ gas at N.T.P. is:
,	(A)	4825 C	(B)	96500 C
	(C)	1930 C	(D)	965 C
29.	If x_1 and	x_2 are the molefract	tions of solvent and no	n-volatile solute and P° and P are the
	vapour pr	ressures of solvent and	d solution, then according	ng to Raoult's law:
	(A)	$P = P^{\circ} \left(1 - x_2 \right)$	(B)	$P^{\circ} = x_1.P$
	(C)	$P - P^{\circ} = x_1 - x_2$	(D)	$(P^{\circ} - P) / P^{\circ} = x_1 / x_2$
30.	At extremation are written as		the van der Waal's eq	uation for 1 mole a real gas may be
	(A)	PV = RT - a/V	(B)	PV = RT + P.b
	(C)	PV = RT - P.b	(D)	(P + a) (V - b) = RT
31.	Potassiun	n crystallizes with bcc	lattice. The number of	atoms in a unit cell is:
	(A)	1	(B)	8
	(C)	4	(D)	2
32.	In the Bo	rax bead test, the colo	ur of metaborate beads	of copper is:
	(A)	Blue	(B)	Green
	(C)	Pink	(D)	Red
33.	The oxida	tion number of carbon	n in carbon suboxide is	
	(A)	+ 2/3	(B)	+4/3
	(C)	- 4/3	(D)	- 2/3

34.	Which of	the following is not a bidentate li	gand?	which has a bodinery of the trial of I also
	(A)	Ethylene diammine	(B)	1, 10-Phenantroline
	(C)	Pyridine	(D)	Glycinate ion
35.	Which of	the following isomeric alcohols ha	as the highe	st boiling point?
	(A)	n-Butyl alcohol	(B)	iso-Butyl alcohol
	(C)	sec-Butyl alcohol	(D)	t-Butyl alcohol
36.	The num	ber of proton NMR signals for p-N	Nitro toluene	e is:
	(A)	2	(B)	5
	(C)	4	(D)	3
37.	The carbo	on-carbon double bond stretching	frequency w	vill be highest in :
	(A)	Cyclohexene	(B)	1, 3-Cyclohexadiene
	(C)	Benzene	(D)	Same in all
38.	The reage	ent which can reduce Nitrobenzer	ne into Azobo	enzene is:
	(A)	Zn/HCl	(B)	Zn/NaOH (MeOH)
	(C)	Zn/NH ₄ Cl	(D)	Zn/NaOH (H ₂ O)
39.	Amines ca	an be estimated using a standard	solution of	
	(A)	Sodium hydroxide	¥	
	(B)	Potassium permanganate		
	(C)	Hydrochloric acid		
	(D)	Sodium carbonate		
40.	Which of	the following shows Carbyl amine	e Test :	
	(A)	iso-Propyl amine	(B)	Aniline
,	(C)	o-Toluidine	(D)	All of the above
41.	Picric acid	l is:		
	(A)	Trinitro benzene	(B)	Trinitro toluene
	(C)	Trinitro phenol	(D)	Tribromo phenol
42.		mosetting plastic obtained by tayde is called:	he polymer	ization reaction between phenol and
	(A)	Bakelite	(B)	Teflon
	(C)	Melamine	(D)	None of the above

43.	The conde	ensation product of Chloroform wit	th Acetone	is:
	(A)	Chloropicrin	(B)	Chloretone
	(C)	Chloroprene	(D)	Chloroquine
44.	Freon-11:			
	(A)		(B)	$\mathrm{CCl}_2\mathrm{F}_2$
	(C)	$\mathrm{C_2Cl_2F_4}$	(D)	CClF_3
45.	The enzy	me which converts starch into mal	tose is:	
•	(A)	Zymase	(B)	Invertase
	(C)	Diastase	(D)	Maltase
46.	Chlorinat	ion of benzene in presence of sunli	ight gives :	
	(A)	Chloro benzene	(B)	Hexachloro benzene
	(C)	Benzyl chloride	(D)	Benzene hexachloride
47.	The heat	evolved when 0.50 mole HCl is mi	xed with 0.	20 mole NaOH solution will be :
	(A)	57.1 kJ	(B)	14.3 kJ
	(C)	11.42 kJ	(D)	1.14 kJ
48.	The heat	s of formation of CO _(g) and Co	O _{2(g)} are -	- 26.4 kcal/mole and - 94 kcal/mole
	respective	ely. The heat of combustion of CO	will be:	
	(A)	+ 26.4 kcal	(B)	+ 94 kcal
	(C)	- 67.6 kcal	(D)	- 120.4 kcal
49.	The Hend	lerson equation for the pH of an ac	eidic buffer	solution is:
	(A)	pH = pKa + log [(salt)/(acid)]		
	(B)	pH = pKa + log [(acid)/(salt)]		
	(C)	pH = pKa - log [(salt)/(acid)]		
	(D)	pH = pKa - log [(acid)/(salt)]		
	T .	ATT - 100 LT - LAC - 100 LT	7/1 40	OV The three least AC will be
50.				OK. Then the value of ΔG will be:
	(A)	zero	(B)	100 kJ
	(C)	50 kJ	(D)	60 kJ

51.		seous reaction $X_{(g)} + Y_{(g)} \rightarrow 4Z_{(g)}$	$_{\rm g)}$, ΔE at 30	0° K is 20 k cal. ΔH for the reaction
	will be:	Market Programme		
	(A)	21.2 k,cal	(B)	18.8 k.cal
	(C)	19.4 k.cal	(D)	20 k.cal
52.	Which of	the following conditions will alv	vays lead to a	spontaneous change?
	(A)	$\Delta H = + \text{ve} \text{ and } \Delta S = + \text{ve}$	(B)	$\Delta H = -$ ve and $\Delta S = +$ ve
	(C)	$\Delta H = + \text{ve and } \Delta S = - \text{ve}$	(D)	$\Delta H = -\text{ve} \text{ and } \Delta S = -\text{ve}$
53.	During α	-decay N/P ratio :		
	(A)	Increases	(B)	Decreases
	(C)	Remains constant	(D)	May increase or decrease
54.	A sample	of rock contains equal number	of Uranium	and Lead ($t\frac{1}{2}$ for U = 4.5×10^9 years).
	Then the	age of the rock would be:		
	(A)	$4.5 \times 10^9 \mathrm{years}$	(B)	$2.25 \times 10^9 \mathrm{years}$
	(C)	$9 \times 10^9 \mathrm{years}$	(D)	$13.5 \times 10^9 \text{years}$
55.	The most	abundant element on earth's cr	ust is :	
	(A)	Hydrogen	(B)	Silicon
	(C)	Nitrogen	(D)	Oxygen
56.		g to Bragg's equation, to get between the planes must be:	maximum in	itensity for first order reflection the
	(A)	λ	(B)	λ/2
	(C)	22	(D)	λ/4
57.	Which of	the following nucleus has magic	number of pr	rotons and neutrons?
	(A)	₂ He ⁴	(B)	₂₀ Ca ⁴¹
	(C)	$_{50}{ m Sb}^{186}$	(D)	82Pb ²⁰⁸
58.	The numb	per of particles emitted when $_{90}$	Th ²³² changes	s to $_{82}{\rm Pb}^{208}$ is :
	(A)	$4\alpha, 6\beta$	(B)	$6\alpha, 4\beta$
	(C)	$6\alpha, 2\beta$	(D)	$8\alpha,6\beta$

59.	87.5% of completed		oleted in 36 m	inutes. When was 50% of the decay
	(A)	24 Minutes	(B)	18 Minutes
	(C)	9 Minutes	(D)	12 Minutes
60.	The amou	ant of NaOH in grams require	ed to prepare 1 l	iter of 0.01 M solution :
	(A)	0.20	(B)	0.40
	(C)	2	(D)	4
61.	Which of	the following species is not a	mphoteric?	
	(A)	HCO ₃ -	(B)	HSO ₃ -
	(C)	HPO ₄ -	(D)	HPO3-
62.	The ratio	of (Kp/Kc) for the hypothetic	al reaction, 2AB	$A_{2(g)} \longrightarrow A_{2(g)} + 3B_{2(g)}$ is:
	(A)	RT	(B)	$(RT)^2$
	(C)	1/RT	(D)	$(RT)^{1/2}$
63.		current passed for 20 seconvalency of the ion is:	ds deposit 0.06	58 g of an ion whose atomic weight is
	(A)	3	(B)	2
	(C)	1	(D)	4
64.	The Calor	nel electrode is:		
	(A)	Pt – Hg/Hg ²⁺	(B)	Ag/Ag ⁺
	(C)	$\mathrm{Pt}-\mathrm{Hg/Hg_{2}Cl_{2}}-\mathrm{Cl^{-}}$	(D)	$\mathrm{Ag/AgCl}_{(\mathrm{s})} - \mathrm{Cl}^-$
65.	For a cell	reaction, $Zn(s) + Mg^{2+}(C = 0)$	0.10) ₹ Zn ²⁺ (C	= 1) + Mg(s), the e.m.f has been found
	to be 0.23	12 volts. Then the standard e	.m.f of the cell i	s:
	(A)	0.2903 volts	(B)	- 0.2312 volts
	(C)	0.2607 volts	(D)	0.02312
66.		re calcium carbonate was fou Γhe concentration of HCl solu		0 ml dilute HCl solution for complete
	(A)	4 N	(B)	0.40 N
	(C)	2 N	(D)	0.20 N
124/	2015		10	A

67.	Which of of K ₄ [Fe([BERNELLE SERVICES PROPERTY PROPERTY	essure r	nearest to that of an equimolar solution
	(A)	$C_{12}H_{22}O_{11}$	(B)	$Al_2(SO_4)_3$
	(C)	Na_2SO_4	(D)	BaCl_2
68.		order rate constant 'k' is related to t pair of values is correct:	emperat	ture as $\log k = 15 - 10^6/T$. Which of the
	(A)	$A = 10^{15}$ and $E = 1.9 \times 10^4 \text{ kJ}$		
	(B)	$A = 10^{15} \text{ and } E = 40 \text{ kJ}$		
		$A = 10^{-15} \text{ and } E = 40 \text{ kJ}$		
1.	(D)	$A = 10^{-15}$ and $E = 1.9 \times 10^4 \text{ kJ}$		
69.	The volume H_2O_2 is:	me of oxygen at N.T.P obtained fr	om the	decomposition of 1 liter 100 volume
	(A)	100 liter	(B)	10 liter
	(C)	1 liter	(D)	200 liter
70.	Permutit	is the commercial name for:		
	(A)	Sodium calcium silicate	(B)	Calcium aluminium silicate
	(C)	Sodium fluoro silicate	(D)	Sodium aluminium silicate
71.		of a carbohydrate with empirical a formula will be:	formula	$\mathrm{CH_2O}$ contains 1 g. of hydrogen. Its
	(A)	$\mathrm{C_5H_{10}O_5}$	(B)	$C_6H_{12}O_6$
	(C)	$C_4H_8O_4$	(D)	$C_3H_6O_3$
72.	Super oxi	des contain :		
	(A)	O^{2-} ions	(B)	O_2^{2-} ions
	(C)	O ₂ ions	(D)	O ⁻ ions
73.	The type	of glass possessing low coefficient of t	thermal	expansion is :
	(A)	Soda glass	(B)	Pyrex glass
	(C)	Flint glass	(D)	Hard glass
74.	Identify t	he fat-soluble vitamin :		
	(A)	Thiamine	(B)	Nicotinic acid
	(C)	Ascorbic acid	(D)	Calciferol
A		11		124/2015 [P.T.O.]

75.	Xerophth	almia is caused by the	deficiency of:		CALL STORY OF THE STORY OF THE STORY
	(A)	Vitamin A		(B)	Vitamin D
	(C)	Vitamin C		(D)	Vitamin K
76.		ber of degrees of free m with ammonia and			em in which ammonium chloride is in ald be:
	(A)	Zero		(B)	One
	(C)	Two		(D)	Three
77.	The temp	erature at which two c	rystalline form	s are in	equilibrium is called :
	(A)	Transition point		(B)	Melting point
	(C)	Eutectic point		(D)	Triple point
78.	Which of	the following pair form	is an ideal solut	tion?	
	(A)	Pyridine – Water		(B)	Ethyl alcohol – Water
	(C)	Benzene – Acetic acid	d	(D)	Benzene – Tolune
79.	An examp	ole for a partially miso	cible liquid syst	em wit	h lower Critical Solution Temperature
	(A)	Phenol-Water		(B)	Aniline-Water
4.	(C)	Aniline-Hexane		(D)	Diethyl amine-Water
80.	The heter	ocyclic ring system pre	esent in the alk	aloid Q	uinine is :
	(A)	Piperidine		(B)	Pyrolidine-Pyridine
	(C)	Quinoline		(D)	Isoquinoline
81.	The reduc	tion product of Citral	with Na(Hg)/Ale	cohol is	
	(A)	p-Cymene		(B)	Geraniol
	(C)	Geranic acid		(D)	Levulinic acid
82.	The princ	ipal constituent of Tur	pentine oil is:		
	(A)	Camphor		(B)	Menthol
	(C)	α -Pinene	,	(D)	Zingiberene
83.	Which of t	the following is a purir	ne base present	in nucl	eic acid?
	(A)	Thymine		(B)	Cytosine
	(C)	Uracil		(D)	Guanine
124/	2015		12	,	A

04.	Lactose 18	s a disaccharide made up of .		
	(A)	Glucose and Fructose	(B)	/Two glucose units
	(C)	Two galactose units	(D)	Glucose and Galactose
85.	Arrange t	the following nucleophiles in the decre	asing o	order of their nucleophilicity
	NH	₂ -, NH ₃ , C ₂ H ₅ -NH ₂ , C ₆ H ₅ -NH ₂		
	(A)	$NH_{2^{-}} > NH_{3} > C_{2}H_{5^{-}}NH_{2} > C_{6}H_{5^{-}}N$	NH_2	
	(B)	$NH_{2^{-}} > C_{2}H_{5^{-}}NH_{2} > NH_{3} > C_{6}H_{5^{-}}NH_{5^{-}}$	NH_2	
	(C)	$NH_{2^{-}} > NH_{3} > C_{6}H_{5^{-}}NH_{2} > C_{2}H_{5^{-}}N$	NH_2	
	(D)	$NH_{2^{-}} > C_{2}H_{5^{-}}NH_{2} > C_{6}H_{5^{-}}NH_{2} > NH_{2} > NH_{3^{-}}NH_{3^{-}}NH_{3^{-}}$	NH_3	
86.	S _N 1 mech	nanism operates in the hydrolysis of:		
	(A)	t-Butyl chloride	(B)	methyl chloride
	(C)	ethyl chloride	(D)	iso-Propyl chloride
87.	Temporar	y hardness of water is due to the pres	ence of	f:
	(A)	Chlorides of Ca and Mg	(B)	Bicarbonates of Ca and Mg
	(C)	Sulphates of Ca and Mg	(D)	Nitrates of Ca and Mg
88.	A sulphid	e ore of Iron is :		
	(A)	Magnetite	(B)	Haematite
	(C)	Limonite	(D)	Iron pyrites
89.	The most	covalent aluminium halide is:		
	(A)	Aluminium chloride	(B)	Aluminium bromide
	(C)	Aluminium fluoride	(D)	Aluminium iodide
90.	The crysta	al system defined by $a = b = c$ and $\alpha =$	$\beta = y$	y ≠ 90° is called:
	(A)	Rhombohedral	(B)	Triclinic
	(C)	Orthorhombic	(D)	Tetragonal
91.		eaction $A \rightarrow Product(s)$ when the cor 'he order of the reaction is:	centra	tion of A is doubled, the rate becomes
	(A)	4	(B)	1
	(C)	3	(D)	2

92.	The pH of	a 1×10^{-5} M solution of NaOH is:		
	(A)	5	(B)	
	(C)	7	(D)	12
93.	Which of t	the following molecules has the large	st RMS	velocity?
	(A)	H ₂ S	(B)	NH ₃
	(C)	CO ₂	(D)	SO ₂
94.	Adsorption	n isobar is a plot of amount adsorbed	l against	
	(A)	Temperature	(B)	1/Temperature
	(C)	Pressure	(D)	Volume
95.	Smoke is	a dispersion of :		
	(A)	Solid in Gas	(B)	Liquid in Gas
	(C)	Gas in Gas	(D)	Gas in Solid
96.	Iodoform	cannot be prepared from:		
	(A)	CH ₃ CHO	(B)	CH ₃ CH ₂ OH
	(C)	CH ₃ OH	(D)	CH ₃ CH(OH)CH ₃
97.	Steel is he	eated to red hot and is rapidly cooled	by dipp	ing in water. This treatment is called :
•	(A)	Tempering	(B)	Anealing
	(C)	Quenching	(D)	Hardening
98.	Pure gold	is:		
00.	(A)	18 carat	(B)	22 carat
	(C)	26 carat	(D)	24 carat
99.	The flame	colour of Lithium metal is:		
	(A)	Yellow	(B)	Blue
	(C)	Violet	(D)	Red
100.	Iodine oxi	dizes thiosulphate ion to :		
	(A)	Sulphite	(B)	Dithionate
	(C)	Tetrathionate	(D)	Sulphate