140/2014

1.		ch among the fo m, s) ?	llowi	ng set of quantu	ım nu	mbers is not al	lowed	for the values of
	(A)	(2, 1, 1, 2)		(B)	(1, 0	, 1, +1/2)		
	(C)	(2, 1, 1, +1/2)		(D)	(4, 3	, -1, -1/2)		
2.	The	effective nuclear	charge	e in the electron i	n He	atom is:		
	(A)	2	(B)	1.7	(C)	1.15	(D)	1.65
3.	The	electron configur	ation	of Fe ²⁺ is :				
	(A)	[Ar] 3d ⁵ 4s ¹	(B)	[Ar] 3d ⁶ 4s ⁰	(C)	[Ar] 3d ⁴ 4s ²	(D)	[Ar] 3d ⁵ 4s ⁰
4.	The	radius ratio betw	een 0	.025 and 0.414 fa	vours	the coordination	numb	per of :
	(A)	8	(B)	4	(C)	6	(D)	3
5.	sp ³	hybridization res	ults ir	arra	ngem	ent of hybrid or	bitals.	
	(A)	triangular	(B)	pyramidal	(C)	tetrahedral	(D)	linear
6.	The	shape of NH ₃ is :						
,	(A)	angular	(B)	pyramidal	(C)	tetrahedral	(D)	linear
7.	Eth	ene has	sig	mas bonds and		pi bonds.		
	(A)	1, 1	(B)	4, 1	(C)	6, 0	(D)	5, 1
8.	Wh	ich among the fol	lowin	g is the artificial	radioa	active series ?		
	(A)	Uranium Series	3	(B)	Act	inium Series		
	(C)	Neptunium Ser	ies	(D)	Tho	rium Series		

9.	The splitting of spectral lines in an electric field is called:											
	(A)	Zeeman effect			(B)	Pho	toelectric effect					
	(C)	Stark effect			(D)	Tho	mson effect					
10.	Whi	ich among the fo	llowin	g is param	agnetic	2 ?						
	(A)	СО	(B)	NO		(C)	O ² -	(D)	O ²⁺			
11.	Whi	ch among the fo	llowin	g can form	intran	noleci	ılar hydrogen bo	nding	?			
	(A)	benzoic acid	(B)	water		(C)	o-nitrophenol	(D)	p-nitrophenol			
12.	Pho	toelectric effect of	lemon	strates the			nature of light.					
	(A)	wave			(B)	part	icle					
	(C)	both particle ar	nd wa	ve	(D)	neit	her particle nor v	vave				
13.	In a	reversible reaction	on, the	reaction r	ate of	the ba	ckward reaction	is:				
	(A)	Positive			(B)	Neg	ative					
	(C)	Zero			(D)	Can	be positive or ne	gative				
14.	Hyd	rolysis of ethyl a	cetate	in presenc	e of ex	cess o	of water is a		order reaction.			
	(A)	zero	(B)	first		(C)	pseudo first	(D)	second			
15.		rate of a chemical creased by 60°C,						ature.	If the temperature			
	(A)	10 times	(B)	128 times		(C)	32 times	(D)	64 times			
16.	Qua	ntum yield of the	react	ion 2HBr -	→ H ₂ +	-Br ₂ is	s:					
	(A)	1	(B)	2		(C)	0.5	(D)	4			
17.	Emis	ssion of light as a	resul	t of chemica	al reac	tion is						
	(A)	fluorescence			(B)	phos	sphorescence					
	(C)	chemiluminesco	ence		(D)	phot	osensitization					

-						3.757	- 2	11 1
18.	Subs	tances which redu	ace th	e quantum yield	d of ph	otochemical r		
	(A)	photo inhibitors	(B)	photo initiators	s (C)	catalysis	(D)	photo sensitizers
19.	Whic	ch of the followin	g is a	correct notation	ı for ar	orbital with	n=4 and	I=2 ?
	(A)	4p	(B)	4f	(C)	4d	(D)	4s
20.	Na+	is isoelectronic v	vith :					
	(A)	K ⁺	(B)	Al ³⁺	(C)	Ca ²⁺	(D)	CI-
21.	Whi	ch of the followin	g hyb	ridizaton tends	to give	maximum ele	ctro negat	ivity for an atom?
		sp ²		(B)				
		sp^3		(D) All	have the same	e effect	
22.	Wh	ich of the followir	ng is a	p-block elemer	nt ?			
	(A)	Rb	(B)	Cs	(C)	Sr	(D)	Sb
23.	The	hybridization of	chlor	ine in ClF ₃ is :				
	(A)	sp^3	(B)	sp ³ d	(C)	dsp ³	(D)	None of these
24.	Wh	nich of the followi	ng is	unstable accord	ing to l	M.O. theory ?		
	(A)	He ₂ ⁺	(B)	C ₂	(C)	He ₂	(D)	O ₂
25.	. A 1	molecule having a	all the	bond angels eq	ual to 9	90° is :		
) PCl ₅	(B)	- <u> </u>) SF ₆	(D)	BeCl ₂
26	. Th	e hybridization o	f carb	on CO ₂ is:				
	(A) sp	(B)	sp ²	(C	sp ³	(D)	sp ³ d
Δ					5			140/2014

27.	Which of the following and 14Si ³⁰ are isotones?										
	(A)	₁₅ P ³²	(B)	₁₃ Al ²⁹	(C)	16 ^{S31}	(D)	16 ^{S33}			
28.	The	stable end prod	uct of	Uranium series	is:						
	(A)	83Bi ²⁰⁹	(B)	₈₂ Pb ²⁰⁶	(C)	82Pb ²⁰⁷	(D)	₈₂ Pb ²⁰⁹			
29.	Wh	ich of the followi	ng nu	clide is a fissile	material	?					
	(A)	₉₂ U ²³⁸	(B)	₉₀ Th ²³²	(C)	91Pa ²³¹	(D)	₉₂ U ²³⁵			
30.	The	nuclear fuel use	d in th	e Nagasaki Bor	mb was :						
	(A)	$92^{U^{233}}$	(B)	₉₄ Pu ²³⁹	(C)	₉₂ U ²³⁵	(D)	₉₂ U ²³⁸			
31.	The	electrochemical ation :	equiva	lent (z) of an e	lement is	s related to its ed	quivale	ent mass (E) by			
	(A)	E = z	(B)	E = 96500z	(C)	z=96500E	(D)	z/E=96500			
32.	The	unit of molar co	nducta	nce is :							
	(A)	Ohm ^{−1} cm mo	1-1	(В) Ohm	-1 cm ³ mol ⁻¹					
	(C)	Ohm ^{−1} cm ² m	ol ⁻¹	(D) Ohm	-1 cm ⁻¹ mol ⁻¹					
33.	Whi	ch of the following	ng par	ticles is the bes	t projecti	ile in bombardm	ent rea	actions ?			
	(A)	₁ H ²	(B)	₂ He ⁴	(C)	on1	(D)	1H1			
34.	The	isotope used for	the tre	atment of Thyr	oid disor	ders is :					
		I ¹³²	(B)	Sr ⁹⁰	(C)	I ¹³¹	(D)	Co ⁶⁰			
35.	Whi	ch of the followir	ng is n	ot a chelating li	gand ?						
	(A)	EDTA	(B)	Ethylene dian		(C) Oxalate	(D)	Ammonia			
140/	2014										

36.	Vitan	nin B ₁₂ is a coor	dinatio	on con	npoun	d of:					
	(A)	Mg	(B)	СО			(C)	Fe	(1	D)	Zn
37.	Inter	system crossing	; is esse	ential	for:						
	(A)	Phosphorescen	ice			(B)	Fluo	rescence			
	(C)	Photosensitiza	tion			(D)	Che	miluminesc	ence		
38.	Smol	ke is an example	e of :								
	(A)	an emulsion	(B)	a ge	ı		(C)	a solid aeı	rosol (D)	a liquid aerosol
39.	How	many significa	nt figu	res ar	e pres	ent in	the r	number 0.00	38 ?		
	(A)	5	(B)	4			(C)	2	((D)	1
40.	A w	eighing balance	is acc	urate tht of	to the	near bstrat	est m	illigram. V	Vhich is	the	correct numerica
	(A)	2.0 g	(B)	2.00	g		(C)	2.000 g	((D)	2.0000 g
41.	The	term used to ex	press p	recisi	on:						
	(A)	Standard devi	ation			(B)	Rela	ative error			
	(C)	Molality				(D)	Mo	larity			
42.	Clos	seness to the me	asured	value	to the	e corre	ect va	lue is callec	l as:		
	(A)	Precision	(B)	Acc	uracy		(C)	Standard	factor	(D)	Quotient
43.	In th	he titration of N	aOH a	gains	oxali	c acid,	the i	ndicator us	ed is:		
	(A)	Phenolphthal	ein			(B)	Me	thyl orange			
	(C)	$\rm KMnO_4$				(D)	Iod	ine			
44.	The	external indica	tor use	d in c	lichror	netry	titrati	ion is :			
	(A)	Potassium fer	rocyar	ide		(B)	Pot	assium ferr	icyanide	2	
	(C)	N-phenyl ant	hranili	c acid		(D)	KN	InO ₄			

45.	The	unit for concentration	which is	indeper	ndent (of temperature :		
	(A)	Molarity (B)	Molality	y	(C)	Normality	(D)	Indicator
46.	The	substance used to pre	pare a sol	ution of	know	n concentration	is:	
	(A)	Primary standard	(B) In	dicator	(C)	Buffer	(D)	Analyte
47.	Pick	out the odd one :						
	(A)	Astronomy (B)	Astrolo	gy	(C)	Phrenology	(D)	Acupuncture
48.	A h	ypothesis, if passes all	challengin	a tasts	ie proj	moted to		
		Scientific hypothesis		(B)				
	200					hypothesis		
	(C)	Theory		(D)	Aux	lliary hypothesis		
49.	The	best known scientific n	nethod is	:				
	(A)	Positivism (B)	Empiric	ism	(C)	Induction	(D)	Deduction
50.	Whi	ch of the following stat	tements al	out rad	io acti	vity is not corre	ct?	
	(A)	It is a nuclear proper	ty					
	(B)	It does not involve ar	ny rearran	gement	of elec	ctrons		
	(C)	It is not affected by the	ne presenc	e of oth	er eler	nents		
	(D)	The rate is affected by	y change o	of tempe	erature	or pressure		
51.	Radi	oactive disintegration o	differs from	m a che	mical	change in being		
	(A)	An exothermic chang		(B)		ontaneous proce		
	(C)	A nuclear process		(D)	1000	st order reaction		
				(0)		a order reaction		
52.	β-гау	rs:						
	(A)	Have greater ionizing	power th	an alph	a rays			
	(B)	Possess greater penetr	rating pow	ver than	gamr	na rays		
	(C)	Are rejected when ligh	ht falls on	active r	netals			
	(D)	Carry charge opposite	in sign b	ut equal	in ma	enitude than a	proton	

53.	Alph	a rays consist of	a strea	m of :				
	(A)	H ⁺	(B)	He ²⁺	(C)	Only electrons	(D)	Only neutrons
54.	Unit	of radioactivity :						
	(A)	Rad	(B)	Grey	(C)	Becquerel	(D)	Curie
55.	Whe	n passing throug	h a m	agnetic field, the	e larges	st deflection is ex	perienc	ced by :
PI I		α-rays	(B)	β-rays	(C)	γ-rays	(D)	All equal
56.	With	the passage of t	time, t	he rate of radio	active o	lisintegration :		
	(A)	Increases		(B)		reases		- 4
	(C)	Remains same		(D) May	y increase or dec	rease	
57.	In th	he reaction ₄ Be ⁹ +	- X → ₅	$B^9 + \gamma$, X is:				
	(A)	Protons	(B)	Deuterons	(C)	Positron	(D)	Neutrons
58.	Wh	ich of the followi	ng pro	ojectiles is the bo	est for l	bombarding the a	rticles	?
	(A)	10.000.000.000.000.000	(B)	protons	(C)		(D)	neutrons
59.	Wh	ich of the radioa	ctive s	eries has Bismu	th as e	nd product?		
		4n	(B)	(C) - (C)	(C)	CONTRACTOR AND AND ADDRESS OF THE AD	(D)	4n+3
60.	The	e lowest lattice er	nergy a	among the follo	wing c	rystals is :		
) NaCl	(B)	15050227	(C	The second second	(D)	CsCl
61.	Th	e Born exponent	of Ag	† ion type is :			27	
	(A) 5	(B)	7	(C	9	(D)) 10
62.	. Th	e correct order o						
) Cl, Br, F, I) Cl, I, Br, F			(D) I, Br, Cl, F
A					9			140/2014 {P.T.O.}

63	. Which of the foll	owing has the hi	ghest ioniza	tion energy ?		
	(A) Na → Na +				M ²⁺ +e (D)	$Al^{2+} \rightarrow Al^{3-}$
64.	. The magnitude of	f lattice energy o	f a solid incr	eases if the io	ns are :	
	(A) Large	(B) Small		(C) Equal size		No effect
65.	Born-Haber cycle	is used to detern	nine :			
	(A) Electronega	tivity	(B) 1	Entropy		
	(C) Lattice energ	gy		All the above		
66.	Paracetamol is a :					
	(A) Hypnotic		(B) A	anti pyretics		
	(C) Anti depress	sants		ranquillisers		
67.	The maximum elec	ctron capacity of	any orbital	s:		
	(A) 2	(B) 3		C) 8	(D)	6
68.	Which among the	following has the	highest ion	ization energy	7?	
	(A) Boron	(B) Carbon) Nitrogen	(D)	Oxygen
69.	The function of the	atom bomb is ba	sed on :			
	(A) natural radio	activity	(B) nu	clear fission a	and chain re-	actions
	(C) spontaneous	chemical reaction	ns (D) nu	clear fusion	and chain ice	ictions
70.	With dilution, the n	nolar conductanc	e of an elect	rolytic solutio		
	(A) decreases			reases		
	(C) remains uncha	anged		reases or incr	eases	
71.	Bauxite is an ore of					
	(A) Copper	(B) Alumini	um (C)	Zinc	(D) T	itanium
140/2	014		10			

72.	The e	electron affinity of	grou	p 18 elemer	nts is				
	(A)	zero			(B)	large	r than halogens		
	(C)	larger than alkal	i meta	als	(D)	large	r in the period o	f eleme	ents
73.	The	most electronegati	ve ele	ement is :					
	(A)	oxygen	(B)	nitrogen		(C)	chlorine	(D)	fluorine
74.	The	coordination num	ber o	f cobalt in [co(en) ₂ Cl ₂]	is:		
	(A)	3	(B)	4		(C)	5	(D)	6
75.	Born	n-Haber cycle is us	sed to	calculate:					
	(A)	refractive index	(B)	density		(C)	R _f Value	(D)	lattice energy
76.	Sulp	hide ions are con	centra	ated by :					
	(A)	leaching			(B)	frotl	n floatation		
	(C)	liquation			(D)	mag	netic separation		
77.	Frue	ctose is a :							
	(A)	aldopentose	(B)	ketohexos	se	(C)	aldohexose	(D)	ketopentose
78.	Nui	mber of elements	in the	4 th period o	of the	perio	dic table is :		
	(A)	8	(B)	10		(C)	18	(D)	32
79.	The	e most stable form	of cy	clohexane i	s:				
	(A)	chair	(B)	half chair	r	(C)	boat	(D)	twist boat
80.	Ide	ntify the spectra t	hat co	orresponds	to the	frequ	ency 690 cm ⁻¹		
	(A)	The property of the second	(B)	NMR		(C)			UV
									1407/2014

81.	Wh	ich among the foll	lowing	g state func	tions	is an e	xtensive proper	ty of th	e system ?
	(A)	temperature	(B)	volume		(C)	viscosity	(D)	refractive index
82.		photon of wavele	100						
	(A)	20,000 cm ⁻¹	(B)	25,000 cm	1-1	(C)	50,000 cm ⁻¹	(D)	40,000 cm ⁻¹
83.	The	reagent used for	the ide	entification	of nic	kel io	n in qualitative a	nalysis	s is :
	(A)	Potassium ferro	cyanio	de	(B)	DMO	G		
	(C)	EDTA			(D)	Ness	ler's reagent		
84.	The	shift of an absorp	otion b	and to the	longer	r wave	elength region is	called	:
	(A)	blue shift	(B)	red shift		(C)	yellow shift	(D)	none of these
85.	The	catalyst used for	Frieda	l Crafts rea	ction	is:			
	(A)	Anhydrous AlC	13		(B)	AICI	3		
	(C)	FeCl ₃			(D)	ZnC	l ₃		
86.	The	element with high	nest el	ectron affin	nity an	none l	nalogens is :		
	(A)	100	(B)			(C)	Br	(D)	I
87.	Boili	ng point of water	is mu	ich higher i	than th	he exp	ected value. Th	is is du	ie to
	(A)	Intra molecular	hydro	gen bondin	ıg				
	(B)	Inter molecular l	hydro	gen bondin	g				
	(C)	Both (A) and (B)							
	(D)	Covalent bondin	g						
88.	Cond	duction due to the	direc	t flow of el	ectron	s is kr	nown as :		
	(A)	ionic conduction			(B)	electr	olytic conductio	n	
	(C)	electronic condu	ction		(D)	mole	cular conduction	1	

12

140/2014

89.	The	quantum number	r 's' d	enotes :					
		principal energy			(B)	dege	eneracy of orbita	ls	
	(C)	number of node	es		(D)	spin	orientation of a	n elect	ron
90.	The	compounds H ₂ O	and I	H ₂ O ₂ can be	used	to illu	ustrate the law o	f:	
	(A)	constant propor	rtion		(B)	recip	procal proportion	n	
	(C)	multiple propor	tion		(D)	gase	ous volumes		
91.	The	first transition se	ries be	egins with:					
	(A)	titanium	(B)	scandium		(C)	vanadium	(D)	manganese
92.	A tr	iangular arranger	nent o	of atoms aris	es du	ie to :			
	(A)	sp hybridization	n		(B)	sp ² 1	hybridisation		
	(C)	sp ³ hybridisatio	n		(D)	sp ³ d	hybridization		
93.	The	critical temperatu	ıre T _c	is related to	Van	derwa	nal's constant by	the re	lation :
	(A)	$T_c = 3b$	(B)	$T_c = a/27b$	2	(C)	$T_c = 8a/27Rb$	(D)	$T_c = 2b$
94.	Give	e the number of m	nodes	of vibrations	s poss	sible f	or CO ₂ :		
	(A)	1	(B)	2		(C)	3	(D)	4
95.	The	hydrolysis of sod	ium a	cetate result	s in a	solut	ion which is :		
	(A)	acidic	(B)	basic		(C)	neutral	(D)	cannot predict
96.	Ostv	vald dilution law	is ap	plicable to:					
	(A)	weak electrolyte	es		(B)	both	weak and stror	ng elect	rolytes
	(C)	strong electroly	tes		(D)	none	e of these		
					10				140/2014

97.	The potential of saturated calomel electrode at 25° C is:								
	(A)	0 V	(B)	0.3335 V		(C)	0.2422 V	(D)	1 V
98.	NaC	l belongs to the co	rystal	system:					
	(A)	hexagonal	(B)	cubic		(C)	monoclinic	(D)	triclinic
99.	IR sp	pectra of solid sar	nples	are usually	taken	by m	ixing the sample	with:	
	(A)	TMS	(B)	Benzene		(C)	KBr	(D)	Water
100.	Crys	stalline solids are	chara	cterised by :					
	(A)	long range orde	r		(B)	shar	p melting point		
	(C)	anisotropy			(D)	all th	ne above		

- o 0 o -