147/2015

Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	A cycle co	onsists of two isothermal and two ise	ntropic p	processes is known as:
	(A)	Otto cycle	(B)	Joule cycle
	(C)	Stirling cycle	(D)	Carnot cycle
2.	In an isor	netric projection the radius of a sphe	re it is e	equal to :
	(A)	0.82 R	(B)	R
	(C)	1.22 R	(D)	2 R
3.	The funct	ion of steam nozzle is to convert:		
	(A)	heat energy steam into kinetic energy	rgy	
	(B)	heat energy steam into rotational e	energy	
	(C)	kinetic energy into heat energy of s	steam	
	(D)	heat energy steam into pressure en	nergy	
4.	Dryness f	raction is the ratio of :		
	(A)	mass of dry steam to the mass of w	ater vap	oour in suspension
	(B)	mass of water vapour in suspensio steam	n to the	mass of water vapour and mass of dry
	(C)	mass of dry steam to the mass suspension	of dry	steam and mass of water vapour in
	(D)	mass of water vapour in suspension	n to the	mass of dry steam
5.		rmal efficiency of Carnot heat engin terator working within the same tem	The second secon	percent, then coefficient of performance e limit would be:
	(A)	1	(B)	2
	(C)	3	(D)	4
6.	During th	rottling process:		
	(A)	internal energy does not change	(B)	pressure does not change.
	(C)	volume does not change	(D)	enthalpy does not change
7.	Which on system?	e of the following parameter is sign	nificant	to ascertain chemical equilibrium of a
	(A).	Clapeyron of equation	(B)	Maxwell relation
	(C)	Gibb's function	(D)	Helmholtz function

		of anthon in cast iro	n usually varies be	tween:
8.	The percent	age of carbon in cast iro	(B)	0.5 to 1.0%
	(A) (1 to 0.2 %	(D)	2.5 to 3.5%
	(C) 1	.5 to 2.5%		
9.	Martensite	is a supersaturated solu	tion of carbon in:	
9.		Alpha iron	(B)	Beta iron
		Gamma iron	(D)	Delta iron
	(0)			
10.	Dislocation	in materials is a	defect.	
	(A)	Point	(B)	Line
	(C)	Plane	(D)	Volumetric
			f 0 15 to 0	3 m The ratio of the new discharge to
11.	The head o	ver a 90° V-notch increa	ases from 0.13 to 0	.3 m. The ratio of the new discharge to
		l discharge is :	(B)	2.25
		1.414	(D)	5.657
	(C)	4.00		
12.	A floating	body will remain in stab	le equilibrium so lo	ong as:
	(A)	the metacentre M lies b	elow the centre of	gravity
	(B)	the metacentre M lies a	bove the centre of	gravity
	(C)	the metacentre and cen	tre of gravity rema	in at the same position
	(D)	None of these		
				11 lister of from the surface to a noin
13.	The nomin	nal thickness of boundar	y layer represents	the distance from the surface to a poin
	where:			
	(A)	the flow ceases to be la		:
	(B)	velocity is 99 percent of		
	(C)	the shear stress become		
	(D)	the flow behaves as if i	t were rotational	
14	A nitot-tu	be is an instrument for i	neasuring:	
14	(A)	pressure of flow	(B)	discharge of fluid
	(C)	velocity of flow	(D)) total energy
15	. The speci	fic speed $Ns = (N\sqrt{Q})/$	$H^{3/4}$ for a double	suction pump is to be evaluated. The
		would be taken:		
	(A)	half the actual dischar	ge (B	
	(C)	double the actual disch	/D) square of the actual discharge

(C) double the actual discharge

10.	head H are connected in series, the resulting discharge is:				
	(A)	2Q against a head 2H	(B)	2Q against a head H	
	(C)	Q against a head 2H	(D)	Q against a head H.	
17.	A pelton	turbine with six nozzles has a spe	oine is propo ecific speed o	ortional to the number of nozzles used. of 8.1. The specific speed per nozzle is:	
	(A)	1.35	(B)	2	
	(C)	3.3	(D)	8.1	
18.	During id	lling of a petrol engine requires:			
	(A)	chemically correct mixture	(B)	variable mixture	
	(C)	lean mixture	(D)	rich mixture	
19.	In investi	ment casting the pattern:			
	(A)	is made of wax			
	(B)	is made of plastic			
	(C)	is always made of the material	to be cast		
	(D)	is not used			
20.	In the Ora	sat apparatus KOH solution is us	ed to absorb		
	(A)	carbon monoxide		carbon dioxide	
	(C)	oxygen	(D)	none of the above	
21.	For the sa	me compression ratio:			
	(A)	thermal efficiency of otto cycle is	s greater tha	an that of diesel cycle	
	(B)	thermal efficiency of otto cycle is		경기 보이 내용 부터 내용 성격 가는 것이 되었다면 가장 되었다면 가장 내용 보고 있다면 하는 것이 없다면 하는 것이 없다면 하는데 없다면 하는데 없다면 하는데 없다면 하는데 없다면 하는데 없다면 다른데 없다면 하는데 없다면	
	(C)	thermal efficiency of otto cycle is	-		
	(D)	thermal efficiency of diesel cycle			
22.	The knock	ing in SI engine gets reduced:		•	
	(A)	by increasing the compression ra	atio		
	(B)	by retarding the spark advance			
	(C)	by increasing the inlet air tempe	erature		
	(D)	by increasing the cooling water t			
3.	Where is t	he Hook's joint used in an autom	obile?		
	(A)	between gearbox and propeller s			
	(B)	between flywheel and clutch	15 9 7		
	(C)	between differential gear and wh	neel		
	(D)	between clutch and gear box			

5

147/2015 [P.T.O.]

A

24.	Work inpu	t to the air compressor with n as	index of co	mpression:				
	(A)	increases with increase in value	or n					
	(B)	decrease with increase in value of n						
	(C)							
	(D)	first increases and then decrease	es with valu	ue of n				
25.	1 tonne of	refrigeration is equivalent to:						
20.	(A)	336 kJ/min	(B)	210 kJ/min				
	(C)	1400 kJ/min	(D)	540 kJ/min				
	(0)							
26.	The thern	nal conductivity is expressed as:						
	(A)	W/mK	(B)	W/m ² K				
	(C)	W/hmK	(D)	W/h ² m ² K				
27.		ines which one of the following n tendency:	is the corr	ect order of the fuels with increasing				
	(A)	Paraffins, Olefins, Naphthenes,	Aromatics					
	(B)	Aromatics, Naphthenes, Paraffin						
	(C)	200						
	(D)	Aromatics, Napthenes, Olefins,						
28.	The Nuss	elt number in natural convection	is a functio	n of Prandtl number and :				
20.	(A)	Stanton number	(B)	Biot number				
	(C)	Reynolds number	(D)	Grashoff number				
	Which of	the following properties of a refrig	rorant is ur	ndesirable?				
29.		high critical temperature	(B)	low specific heat of liquid				
	(A)	low specific volume vapour	(D)	high boiling point				
	(0)	low specific volume vapour		mgn sommig Position				
30.		ssivity of a body is equal to al m. This law refers to as:	bsorptivity	when the body remains in thermal				
	(A)	Planck's law	(B)	Lambert's law				
	(C)	Kirchoff's law	(D)	Wien's displacement law				
31.	In a vapo	ur compression cycle the condition	n of refriger	ant is saturated liquid :				
	(A)	before entering the compressor	400					
	(B)	before passing through the cond	enser					
	(C)	after passing through the conde						
	(D)	after passing through the expan						

32.	Which of the following processes is generally used in winter air conditioning?						
	(A)	dehumidification	(B)	humidification			
	(C)	cooling and dehumidification	(D)	heating and humidification			
33.	Upto criti	ical radius of insulation the heat flow :					
	(A)	decreases					
	(B)	increases					
	(C)	heat flux decreases					
	(D)	convection heat loss is less than cond	uction	n heat loss			
34.	As relativ	re humidity decreases the dew point wi	ll be –	———— wet bulb temperature.			
	(A)	higher than	(B)	equal to			
	(C)	lower than	(D)	none of the above			
35.		oke engine has a speed of 750 rpm. A foing at 1500 rpm. The theoretical outpu		roke engine having an identical cylinder te two stroke engine will be :			
	(A)	twice that of the four stroke engine					
	(B)	half that of the four stroke engine					
	(C)	the same as that of the four stroke en	ngine				
	(D)	depend upon whether it is a CI or SI	engine	e.			
36.		reason for adopting the axial flow cont turbine is that:	npres	sors instead of centrifugal compressors			
	(A) starting torque for axial flow compressor is high						
	(B)	the frontal area of axial flow compres	sor is	considerably less			
	(C)	the efficiency of middle speed range i	s high	er			
	(D)	pressure ratio per stage is high					
37.	Morse tes	t measures the indicated power of:					
	(A)	SI engine	(B)	CI engine			
*	(C)	Steam engines	(D)	Steam turbine			
38.	Which one	e of the following is a lower pair?					
	(A)	cam and follower	(B)	toothed gearing			
	(C)	shaft in a bearing	(D)	ball and race in bearing			
39.	Coriolis co	omponent of acceleration is present exi	sts wh	nenever a point moves along a path that			
	(A)	tangential acceleration	(B)	centripetal acceleration			
	(C)	linear motion	(D)	rotational motion			

40.		d of an engine is seen is said to be:	to fluctuate Continu	ously above an	d below mean speed. The
	(A)	isochronous	(B)	hunting	
	(C)	over sensitive	(D)		
41.	Which m	otor will be suitable for	r traction?		
	(A)	DC series motor	(B)	DC shunt co	nstant speed
	(C)	DC shunt adjustable			
42.	When tw		involute profiles on	their tooth eng	gage the line of action is
	(A)	pitch circle	(B)	dedendum ci	ircle
	(C)	addendum circle	(D)	base circle	
43.	Crowning	of pulleys is generally	done:		
	(A)	to reduce the belt frie	ction		
	(B)	to dissipate the heat	generated due to fric	tion	
	(C)	to perfect the belt joi	nt so that it may not	break while ru	nning
	(D)	to prevent the belt fr	om running of the pu	lley	
44.		supported beam of span bending moment of:	an 10 m carrying a lo	oad of 500 N at	the midspan will have a
	(A)	500 Nm	(B)	1250 Nm	
	(C)	2500 Nm	(D)	5000 Nm	
45.		eter of shaft is increa d. How many times the			ner conditions remaining
	(A)	2 times	(B)	4 times	
	(C)	8 times	(D)	16 times	
46.	If a compreparallel th	ression coil spring of s ne equivalent spring st	stiffness 10 N/m is cuiffness will be:	it into two equ	al parts and the used in
	(A)	10 N/m	(B)	20 N/m	
	(C)	40 N/m	(D)	80 N/m	
47.	A differen	tial gear in an automo	bile is :		
	(A)	simple gear train	(B)	epicyclic gear	train
	(C)	compound gear train	(D)	none of these	

48.	3. The engine of an aeroplane rotates in clockwise direction when seen from the tail end and the aeroplane takes turn to left. The effect of gyroscopic couple on the aeroplane will be:				
	(A)	to raise the nose and dip the tail	(B)	to dip the nose and raise the tail	
	(C)	to raise the nose and tail	(D)	to dip the nose and tail	
49.	In a locon	notive the ratio of the connecting rod len	gth to	crank radius is kept large in order to:	
	. (A)	minimise the effect of primary force	(B)	minimise the effect of secondary force	
	(C)	have perfect balancing	(D)	start the locomotive quickly	
50.		o facilitate the starting of locomotive in ders are placed:	n any	position, the crank of a locomotive with	
	(A)	45°	(B)	90°	
	(C)	120°	(D)	180°	
51.	The ratio force is kn		ced vi	ibration to the deflection due to static	
	(A)	damping factor	(B)	damping coefficient	
	(C)	logarithmic decrement	(D)	magnification factor	
52.	Determine			mm length is to be turned on a lathe. mm in one pass when cutting speed is	
	(A)	1.74 min	(B)	2.74 min	
	(C)	3.74 min	(D)	4.74 min	
53.	For produ	cing more accurate holes, the sequence	of op	erations to be followed is:	
	(A)	centering, drilling, boring, reaming	(B)	centering, boring, drilling, reaming	
	(C)	drilling, centering, boring, reaming	(D)	drilling, reaming, boring, centering	
54.	The main	purpose of chaplets used in foundary p	ractic	e are:	
	(A)	to provide efficient venting	(B)	to ensure directional solidification	
	(C)	to support the core	(D)	to align the mould boxes	
55.	In oxy-ace	tylene gas welding the volume of oxyge	n req	uired per unit volume of acetylene :	
	(A)	1	(B)	1.5	
	(C)	2	(D)	2.5	
66.	Tempering	g of hardened steel is done to increase i	ts:		
	(A)	grain size	(B)	surface condition	
	(C)	duetility	(D)	carbon content	

57.	The angle which is found between the face of the cutting tool and the normal to the machined surface at the cutting edge is called:				
	(A)	rake angle		(B)	relief angle
	(C)	clearance angle		(D)	cutting angle
58.			e bond holds the	cutting	points or abrasives in place defined by
	the term:	*			
	(A)	structure		(B)	grit size
	(C)	grain size		(D)	grade
59.	Which of	the following is not	a part of Capstan	lathe?	
	(A)	chuck		(B)	tailstock
	(C)	spindle		(D)	tool post
60.	The gears	manufactured on g	generating princip	le in :	
	(A)	hobbing		(B)	milling
	(C)	broaching		(D)	shaping
61.	Quick ret	urning mechanism	is used in :		
	(A)	milling machine		(B)	broaching machine
	(C)	slotting machine		(D)	lathe machine
62.	During ul	trasonic machining	the metal remova	al is ach	ieved by:
	(A)	high frequency ed	dy currents		
	(B)	high frequency so	und waves		
	(C)	hammering action	of abrasive partic	cles	
	(D)	rubbing action bet	ween tool and wo	rk piece	
63.			ard specifications	the to	tal number of designated grades of
		tal tolerances are:			
	(A)	18		(B)	21
	(C)	24		(D)	28
64.	In a metri	c thread designated	l by M12 \times 1.5 spe	cify tha	t the thread has:
	(A)	cross sectional are	a 12 mm ² and dep	oth 1.5	
	(B)	nominal diameter	12 mm and pitch	1.5	
	(C)			er of th	reads per mm is 1.5
	(D)	Pitch 1.5 and dept	h 12 mm		

65.	In a stear	n engine the joint to be used for connec	cting t	he piston rod and cross-head is:		
	(A)	knucle joint	(B)	cotter joint		
	(C)	oldham's coupling	(D)	bolted joint		
66.	Creep in	a belt drive is due to :				
	(A)	improper crowning				
	(B)	plasticity of belt material				
	(C)	differential elongation of belt due pulley	to diff	erence in tension on two sides of the		
	(D)	Change in the coefficient of friction of	lue to	over heating		
67.	67. Annual demand for a product costing Rs. 100 is 400. Ordering cost per order is Rs. 100 carrying cost is Rs. 2 per unit per year. The economic lot size is then:					
	(A)	200	(B)	300		
	(C)	400	(D)	500		
68.	CPM and	PERT techniques are used for:				
	(A)	layout planning	(B)	financial management		
	(C)	executing a new project	(D)	increasing productivity		
69.	ABC anal	ysis in materials management is a me	thod o	f classifying the inventories based on :		
	(A)	the value of annual usage item	(B)	economic order quantity		
	(C)	volume of material consumption	(D)	quantity of material used		
70.	Break eve	en point is the point where:				
	(A)	fixed and variable cost line will inter	sect			
	(B)	variable and total cost lines intersect				
	(C)	total cost and fixed cost lines interse	ct			
	(D)	total cost and sales revenue lines int	ersect			
71.	The core p	product model required for any CAD/C	AM sy	stem:		
	(A)	Data model	(B)	Solid model		
	(C)	Prototype	(D)	Geometric model		
72.	Group tec	chnology is suitable for production of:				
	(A)	medium range variety and high rang	e qual	ity		
	(B)	high range variety and high range qu				
	(C)	medium range variety and medium r	ange o	quantity		
(D) low range variety and low range quality						

13.	infins	the tools are identify	led by means of		
	(A)	colour code		(B)	bar code
	(C)	PLC		(D)	digital code
74.	Just in t	imo manufacturia	1.7	,	
14.		ime manufacturing	philosophy emp		
	(A)			(B)	manufacturing
	(C)	profit		(D)	inventory
75.	A joint se	ector undertaking:			
	(A)	is jointly owned b	y several share	holders	
	(B)				rnment
	(C)				
	(D)				ments
76.	C-charts	are the best exampl	e of ·		
	(A)	Binomial distribu		(B)	Poisson distribution
	(C)	Normal distributi		(D)	None of these
				(D).	
77.	Cellular 1	manufacturing syste	m is designed	on the basis	s of:
	(A)	JIT		(B)	MRP
	(C)	GT		(D)	Layout
78.	In linear	programming the sh	adow prices ar	ρ.	
	(A)	the values assigne			
	(B)	maximum cost per		capacity	
	(C)	cost of bought out			
	(D)	cost of items manu		plant	
79.	A fooler -				
10.		auge is used to check	x :		
	(C)	pitch of gears	11		shape of screw threads
	(0)	bore of discs and p	ulleys	(D)	thickness of a clearance
80.	The relation	on between tool life	(T) and cutting	speed (V)	s expressed as:
		$TV^n = C$			V + nT = C
	(C)	T + nV = C			$VT^n = C$
				(D)	VI = C
81.	Which ame	endment of the cons	titution lowerin	ng the votir	ng age from 21 to 18?
*	(A)	73		(B) (
	(C)	64		(D) 6	31

	(A)	Supreme Court		1000 - 10 10 10 10 10 10 10 10 10 10 10 10 10
	(0)	papione court	(B)	Prime Minister
	(C)	Parliament	(D)	State legislature
83.	The const	itution prescribe the age qualification	for bei	ing appointed as Governor of the state :
	(A)	25 years	(B)	35 years
	(C)	45 years	(D)	40 years
	Which ar sentention		he rig	ght to protection against arrest and
	· (A)	Article 21	(B)	Article 19
	(C)	Article 20	(D)	Article 22
85.	The chief	legal advicer of the President of India :		
	(A)	Comptroller and Auditor General	(B)	Chief Justice of Supreme Court
	(C)	Attorney General	(D)	Division bench of Supreme Court
86.	Sarkaria (commission related to:		
	(A)	Minorities rights	(B)	River water and Border disputes
	(C)	Backward class commission	(D)	Centre State relations
87.	In 1975 th	ne National Emergency Declaration sig	ned by	<i>ı</i> :
	(A)	V.V. Giri	(B)	Neelam Sanjeev Reddy
	(C)	Zakir Huzzain	(D)	Fakhruddin Ali Ahmed
88. I	Modern st	ates are called "Professional States" ca	lled b	y:
	(A)	Norman D Palmer	(B)	Rajani Kothari
	(C)	S.L. Sikri	(D)	Frederic C. Mosher
89.	Write the	odd one :		
	· (A)	A.B. Vajpayee	(B)	Rajeev Gandhi
	(C)	ManMohan Singh	(D)	Jawaharlal Nehru
90.	The young	gest person who became the Chief Mini	ster of	f the State:
	(A)	Omar Abdulla	(B)	Akhilesh Yadav
	(C)	Praphulla Mahanta	(D)	Aravind Khejriwal

91.	Operation Protective Edge is associated with:				
	(A)	Egypt		(B)	Israel
	(C)	Kuwait		(D)	Afghanistan
92.	Bachpan	Bachchavo Andola	in is founded by :		
	(A)	Vinobabave		(B)	Baba Amte
	(C)	Kailesh Satyarth	ni di	(D)	Aravind Khejriwal
93.	Malayali	poet known as 'Sir	nging Sword of Kerala	a' is:	
	(A)	T.S. Tirumumpu		(B)	Changampuzha
	(C)	Kumaranasan		(D)	Vailoppalli
94.	The ruler	of Travancore who	o abolished 'Shucheer	ndram	Kaimukku':
	(A)	Swati Tirunal		(B)	Utram Tirunal
	(C)	Sree Moolam Tir	runal	(D)	Sree Visakham Tirunal
95.	'Jeevitha	Samaram' is the a	utobiography of:		
	(A)	EMS Namboothi	rippadu	(B)	C. Kesavan
	(C)	A.K. Gopalan		(D)	V.T. Bhattathirippad
96.	Who was	the internal Minis	ter of Kerala in 1957	?	
	(A)	EMS Namboothi	rippadu	(B)	T.V. Thomas
	(C)	V.R. Krishnaiyye	er	(D)	K.R. Gouri
97.	The real r	name of Vagvadana	anta was :		
	(A)	Kunhiraman		(B)	Kunhikannan
	(C)	Damodaran		(D)	Bala Krishnan
98.	The editor	r of the journal 'Mi	itavadi' was :		
	(A)	Ramakrishnappi	lla	(B)	Vakkam Abdul Khader
	(C)	C. Krishnan		(D)	T.K. Madhavan
99.	Who found	ded Kochi Pulaya	Mahasabha'?		
	(A)	K.P. Karuppan		(B)	Ayyankali
	(C)	Sahodaran Ayyar	ppan	(D)	None of these
100.	'Aruvippu	ram Pratishta' wa	s conducted in the ye	ar:	
	(A)	1878		(B)	1887
	(C)	1898		(D)	1787