Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	For a viso	ous flow, the relation between the coeff	ficien	t of friction f and Reynolds number Re
-	(A)	f = 64/Re	(B)	f = 16/Re
	(C)	f = 8/Re	(D)	f = 4/Re
2.	For flow t	hrough pipes, the maximum transmissi	on ef	ficiency that can achieve is:
	(A)	100%	(B)	50%
	(C)	40%	(D)	67%
3.	The unit	of Chezy's constant C in the Chezy's form	mula	is:
	(A)	None	(B)	m/s
	(C)	m/s ²	(D)	m ^{1/2} /s
4.	The ratio	of the pitch diameter of Pelton wheel to	the	diameter of the jet is called:
	(A)	Jet ratio	(B)	Speed ratio
	(C)	Wheel ratio	(D)	None of the above
5.	The hydr 1000 rpm 100 liters	with net head 700 m when the side cl	ean b	bucket diameter 1 m and running at acce angle is 15 degree and discharge of
	(A)	60%	(B)	70%
	(C)	85%	(D)	97%
6.			evelo	ps 7225 kW power under a head of 25
		t 135 r.p.m is :	(B)	180
	(A)	150	(D)	205
	(C)	195	(2)	
7.	The head	l loss due to friction for the flow of water	r thro	ough penstocks can be minimized by:
	(A)	Decreasing the diameter of penstock	(B)	Increasing the diameter of penstock
	(C)	Increasing the length of penstock	(D)	Increasing the velocity of flow
		8		
A				[P.T.O.]

8.	The head	against which the cent	trifugal pump ha	s to v	vork is called :
	(A)	Static head		(B)	Suction head
	(C)	Delivery head		(D)	Manometric head
9.	An exam	ple of a turbine with hi	gh head and low	speci	fic speed is :
1	(A)	Kaplan		(B)	Francis
	(C)	Pelton		(D)	None
10.					ng at 50 rpm, delivers 100 liters/s when and 400 mm respectively is :
	(A)	0.47 m³/sec		(B)	0.047 m³/sec
	(C)	0.00047 m ³ /s		(D)	4.7 m³/s
11.	In the Va	n der Wall's equation (p+(a/v2)) (v-b) = I	T th	e unit of constant a is:
	(A)	Nm ²		(B)	Nm ⁴
	(C)	N/m		(D)	None
12.	Which pa	rameter remains const	ant during Joule-	Thon	nson expansion?
	(A)	Temperature		(B)	Pressure
	(C)	Enthalpy		(D)	Volume
13.	For an ide	eal gas the compressibil	lity factor is :		
	(A)	Zero		(B)	Unity
	(C)	Infinity ·		(D)	None
14.		ump works on reversed cW of work input, the re			COP of 5. If it works as a refrigerator be:
	(A)	1 kW		(B)	2 kW
1	(C)	3 kW		(D)	4 kW
15.	The value	of Universal gas const	ant is:		
	(A)	8.314 J/kgK		(B)	83.14 kJ/kgK
	(C)	8.314 kJ/kgK		(D)	None
16.	Which one	e of the following is the	extensive proper	ty of	the system?
	(A)	Volume		(B)	Pressure
	(C)	Temperature		(D)	Density

4

A

3/2014

17.	Which par	ameter remains constant d	uring a reversible	adiabatic process?
	(A)	Enthalpy	(B)	Temperature
	(C)	Entropy	(D)	Internal Energy
18,	Second lav	v of thermodynamics defin	28:	
	(A)	Efficiency	(B)	Enthalpy
	(C)	Internal Energy	(D)	Entropy
19.	Which one	of the following relation d	efines Helmholtz	function F?
	(A)	H+TS	(B)	H-TS
	(C)	U+TS	(D)	U-TS
20.	Which one system?	e of the following paramet	ers is significant	to ascertain chemical equilibrium of a
	(A)	Clapeyron Equation	(B)	Maxwell reaction
	(C)	Helmholts Function	(D)	Gibbs Function
21.	Which of	the following cast iron cons	sists of carbon in r	osette form?
	(A)	White cast iron	(B)	Grey cast iron
	(C)	Malleable cast iron	(D)	Nodular cast iron
22.	Puddling	is the process employed for	converting:	
-	(A)	Iron ore into pig iron	(B)	Pig iron into wrought iron
	(C)	Pig iron into cast iron	(D)	None
23.	The melti	ing point of mild steel in de	egree centigrade is	about:
	(A)	850	(B)	1000
	(C)	1250	(D)	1500
24.	Which is	the magnetic allotrope of i	ron?	
	(A)	α iron	(B)	β iron
	(C)	γ iron	(D)	None
25.	Austemp	ering is a heat treatment p	process used to obt	ain greater:
177.27.0	(A)		(B)	Hardness
	(C)	Toughness	(D)	Brittleness
	100			

26.	18/8 stai	nless steel contains :		
	. (A)	18% Vanadium, 8% Chromium	(B)	18% Chromium, 8% Nickel
	(C)	18% Tungston, 8% Nickel	(D)	18% Tungston, 8% Chromium
27.	Muntz m	netal contains copper and zinc in the	ratio:	
	(A)	1:1	(B)	2:3
	(C)	3:2	(D)	1:4
28.	Monal m	etal is an alloy of:		
	(A)	Nickel and Copper	(B)	Copper and Chromium
	(C)	Nickel and Chromium	(D)	None
29.	The hard	ness of a lathe bed material should b	oe measu	nred by :
	(A)	Rockwell tester	(B)	Brinell Hardness tester
	(C)	Vickers Hardness tester	(D)	None
30.	White me	etal is an alloy of lead with :		
	(A)	Aluminium	(B)	Zinc
	(C)	Tin	(D)	Bismuth
31.	The forgi	ng of steel specimen is done at a tem	perature	of:
	(A)	400°C	(B)	800°C
	(C)	1100°C	(D)	1500°C
32.	Which on	e of the following is not an application	on of forg	ing?
	(A)	Rail sections	(B)	Chisels
	(C)	Brake pedal of an automobile	(D)	Steel balls of ball bearing
33.	The proce	ess of removing the burns or flash fro	m a forg	ed component in drop forging is called :
	(A)	Swaging	(B)	Perforating
	(C)	Trimming	(D)	Fettling
34.	The electr	ric resistance welding operates with :		
	(A)	Low current and high voltage	(B)	High current and low voltage
	(C)	Low current and low voltage	(D)	High current and high voltage
35.	Spot weld	ing, projection welding and seam we	lding bel	ong to the category of :
	(A)	Arc welding	(B)	Thermit welding
	(C)	Forge welding	(D)	Resistance welding

36.	The numb	er of zones of near generation in		
	(A)	2	(B)	3
	(C)	5	(D)	7
	1771 : 1	-6 th - 6 Haming is not a fusion w	elding proc	pes?
37.		of the following is not a fusion w	(B)	Arc welding
	(A)			Brazing
	(C)	Resistance welding	(D)	brazing
38.	The ratio	between oxygen and acetylene ga	ses for neut	ral flame in gas welding is:
	(A)	2:1	(B)	1:1
	(C)	1:2	(D)	4:1
39.	Thermit	used in thermit welding process i	s a mixture	of:
00.	(A)	Charcol and Aluminium		Aluminium and Iron Oxide
	(C)	Charcol and Iron Oxide	(D)	Charcol, Aluminium and Iron Oxide
40.	The temp	erature developed during a thern		
	(A)	1500°C	(B)	2000°C
	(C)	2500°C	(D)	3500°C
41.	The curre	nt value in the arc welding is dec	ided by:	
	· (A)		(B)	Plate thickness
	(C)	Welded length	(D)	Electrode size
		*		
42.	The coati	ng material of an arc welding con		
	1.	Deoxidizing agent	2.	Molten drops
	3.	Weld pool		
		ect the correct answer using the c	The second secon	
	(A)	1,2 and 3		1 and 2
	(C)	2 and 3	(D)	1 and 3
43.	The strai	ght polarity in ac arc welding is r	ecommende	ed for welding:
	(A)	Aluminum	(B)	Nickel
	(C)	Mild steel	(D)	Bronze
44.	Which of	the following welding methods u		
	(A)	Submerged arc welding	(B)	Resistance welding
	(C)	Plasma welding	(D)	None

45.	The weld	ing zone in the TIG arc weldi	ng is shielded	by	an atmosphere of:
	(A)	Oxygen Gas	(B))	CO ₂
	(C)	Hydrogen	(D))	Helium
46.	Which of	the following welding techniq	ues uses a nor	n c	onsumable electrode?
	(A)	MIG	(B))	TIG
	(C)	Submerged are	(D))	Thermit
47	Vacuum	environment is required in :			
	(A)	Ulfrasonic welding	(B))	Laser beam welding
	(C)	Electron beam welding	(D))	None
48.	High spec	ed electron beam of electron b	eam welding i	s f	ocused on the weld spot using:
	(A)	Vacuum lens	(B))	Inert gas lens
	(C)	Optical lens	(D))	Magnetic lens
49.	Grey iron	is usually welded using the f	ollowing meth	od	
	(A)	TIG	(B))	MIG
	(C)	Arc	(D))	Gas
50.	Weld spa	tter is:			
	(A)	a welding defect	(B))	an electrode
	(C)	a flux	(D))	none
51.	All of the	following are units of therma	l conductivity	ex	cept:
	(A)	kcal/m-hr-°C	(B))	kj/m-hr-k
	(C)	W/m-s-k	(D))	cal/cm-s-°C
52.		ite wall of a furnace has two io 3:2. What is the ratio of te			thickness with thermal conductivities across the two layers:
	(A)	2:3	(B)		3:2
	(C)	1:2	(D))	None
53.		nickness of insulation for a sp oefficient h is given by :	here with the	rm	nal conductivity k and convective heat
	(A)	2k/h	(B)		k/h
	(C)	k/4h	(D)		k/2h
3/20	14		8		A

	(A)	Absorptivity $\alpha = 1$, Reflectivity $\rho = 0$ and transmissivity $\tau = 0$		
	(B)	$\alpha = \tau = 0$ and $\rho = 1$		
	(C)	$\alpha = \rho = 0$ and $\tau = 1$		
	(D)	None		
55.	The inten	sity of solar radiation on earth is	:	
	(A)	$0.5~\mathrm{kW/m^2}$	(B)	1 kW/m ²
	(C)	2 kW/m ²	(D)	5 kW/m ²
56.		perature of a hot body is increase by nearly:	sed by 50%	the amount of radiation emitted by it
	(A)	50%	(B)	100%
	(C)	200%	(D)	500%
57.	The value	of shape factor for two infinite pa	arallel plane	es separated by a distance x is :
	(A)		(B)	
	(C)	0.5	(D)	x
58.	The ratio	of heat transfer by convection to t	that by cond	luction is called:
	(A)	Stanton Number	(B)	Nusselt Number
	(C)	Biot Number	(D)	Peclet Number
59.	Which dir	nensionless number has a signific	ant role in	natural convection?
	(A)	Grashoff Number	(B)	Peclet Number
	(C)	Mach Number	(D)	None
60.	For the sa	me operating temperature limits	the COP of	the heat pump equals:
	(A)	COP of refrigerator	(B)	1 + COP of Refrigerator
	(C)	COP of Refrigerator -1	(D)	None
61.		refrigerator rejects 3000 kJ of herating temperature in the cycle s		K while using 1000 kJ of work. The bout:
	(A)	288 K	(B)	300 K
	(C)	267 K	(D)	273 K
A			9	3/2014 [P.T.O.]

. 54. For a perfectly black body :

62.	The refrigeration system of a passenger aircraft works on reversed:				
	(A)	Brayton Cycle	(B)	Atkinson cycle	
	(C)	Ericson cycle	(D)	Carnot cycle	
63.	During w Constant		sion refri	geration system, the enthalpy remains	
	(A)	Evaporator	(B)	Compressor	
	(C)	Throttle Valve	(D)	None	
64.	One tone	of refrigeration is equal to :			
	(A)	3.5 kW	(B)	5 kW	
	(C)	10 kW	· (D)	12.5 kW	
65.	The igniti	ion temperature of diesel is about :			
	(A)	250°C	(B)	400°C	
	(C)	600°C	(D)	750°C	
66.	Knocking	tendency in SI engine reduces with	increasi	ng:	
	(A)	Compression Ratio	(B)	Wall temperature	
	(C)	Engine Speed	(D)	None	
67.	The two r	eference fuels used for cetane rating	g are :		
	(A)	Cetane and iso octane			
	(B)	Cetane and tetra ethyl lead			
	(C)	Cetane and alpha methyl naphtha	lene		
	(D)	None			
68.	minimum			fect inter cooling the work input will be essure P2 and the delivery pressure P3	
	(A)	P2 = (P1*P3)0.5	(B)	P2 = (P1+P3)/2	
	(C)	P2 = P1/P3	(D)	None	
69.				out for ideal gas turbine power plant kimum temperature of 1000 K is closer	
	(A)	4	(B)	8	
	(C)	12	(D)	16	
			(-)		

70.	The use o	f regeneration in a gas turbine cycle	increase	s:
	(A)	Efficiency but has no effect on outp	ut	
	(B)	Output but has no effect on efficien	су	
	- (C)	Both efficiency and output		
	(D)	None		
71.	Which on	e of the following is a lower pair?		
	(A)	Cam and follower	(B)	Toothed gearing
	(C)	Shaft in a bearing	(D)	None
72.	400 N res			a flat belt drive system are 700 N and s 5 m/s, the power transmitted by the
	(A)	1.5 kW	(B)	3 kW
	(C)	5 kW	(D)	10 kW
73.	In a 6 × 2	0 wire rope, number 6 indicates :		
	(A)	Diameter of the wire rope in mm		
	(B)	Number of strands in the wire rope		
	(C)	Number of wires		
	(D)	None		
74.	The motio	on transmitted between the teeth of t	wo spur	gears is generally:
	(A)	Sliding	(B)	Rolling
	(C)	Rotary	(D)	Partly sliding and partly rolling
75.	The produ	act of circular pitch and diametral pit	ch equa	ls:
	(A)	π	(B)	1
	(C)	Infinity	(D)	None
76.		elt drive, the belt call be subjected to aximum power transmission :	maxim	um tension T and a centrifugal tension
	(A)	T = Tc	(B)	T = 2Tc
	(C)	T = 3Tc	(D)	T = 4Tc

11

A

77.	Which of the following is not a common section of V belts?			
	(A)	F	(B)	C .
	(C)	E	(D)	A
78.	A rack is	a gear of infinite :		
	(A)	Pitch	(B)	Module
	(C)	Diameter	(D)	Number of teeth
79.	The circu	lar pitch of a toothed wheel with 24 t	eeth and	l a module of 4.25 mm is :
	(A)	1.85 mm	(B)	4.25 mm
	(C)	6.67 mm	- (D)	13.35 mm
80.	The maxi	mum efficiency of a worm and worm	wheel sy	ystem in terms of friction angle Φ is :
	(A)	$1-\cos/1+\cos\Phi$	(B)	$1-\sin\Phi/1+\cos\Phi$
	(C)	$1-\sin\Phi/1+\sin\Phi$	(D)	$1 - \tan \Phi/1 + \tan \Phi$
81.		iple disc clutch, n1 and n2 are the nu ely. Then the number of pairs of contr		f discs on the driving and driven shafts
	(A)	n1 + n2	(B)	n1 + n2 - 1
	(C)	n1 - n2	(D)	None
82.	The type	of brakes commonly used in automob	iles is :	
	(A)	Shoe brake	(B)	Band brake
	(C)	Band and Block brake	(D)	None
83.	A reverte	d gear train is one in which the outpu	at and ir	nput shaft :
	(A)	Rotate in opposite directions	(B)	Are coaxial
	(C)	Are at right angles to each other	(D)	None
84.		have a module pitch of 40 mm. The roone module what is the radius of ad		of teeth on the gear is 40. If addendum
	(A)	36 mm	(B)	42 mm
	(C)	56 mm	(D)	94 mm
85.	When two		es on th	eir teeth engage the line of action is
	(A)	Pitch circle	(B)	Dedundum circle
	(C)	Addendum circle	(D)	Base circle

86.	A 60 mm long and 6 mm thick fillet weld carries a steady load of 15 kN along the weld. The shear strength of the weld material is 200 MPa. The factor of safety is:				
	(A)	2.4	(B)	3.4	
	(C)	4.8	(D)	6.8	
87.	In a butt	weld joint the throat of weld as	compared to	size of the weld is in the ratio :	
	(A)	2:1	(B)	1:2	
	(C)	1:1	(D)	1:3	
88.				plate by a circular fillet weld of throat imum shear stress induced in the weld	
*	(A)	$T / \pi t d^2$	(B)	$2T / \pi t d^2$	
	(C)	$4T / \pi t d^2$	(D)	$2T/\pi t d^3$	
89.	Φ is: (A)	ency of a power screw is maxi $\pi/2 - \Phi/2$ $\pi - \Phi/2$	(B)	ne lead angle in terms of friction angle $\pi/2-\Phi$ $\pi-\Phi$	
90.		thread the angle between the	flanke is:		
30.	(A)		(B)	47.5°	
	(C)		(D)	60°	
91.	A high pr	essure angle for spur gears lea	ds to:		
	(A)	Minimum axial thrust	(B)	Wide base and stronger teeth	
	(C)	More interference	(D)	None	
92.	A worm h	as a lead angle of 22.5°. This c	orresponds to	a helix angle of :	
	(A)	22.5°	(B)	45°	
	(C)	55° .	(D)	67.5°	
93.	Which ty	pe of spring is usually used for	an automobile	clutch?	
	(A)	Spiral spring	(B)	Leaf spring	
	(C)	Closed coil helical spring	(D)	None	

94.	The ratio	between the mean diame	ter of the coil and d	iameter of wire is called :
	(A)	Spring rate	(B)	Spring Constant
	(C)	Spring stiffness	(D)	Spring index.
95.		with spring constant s l		equal parts. Each portion of the cut
	(A)	8	(B)	s/n
	. (C)	n/s	(D)	ns
96.	Which of	the following is not a frict	ion clutch?	
	(A)	Plate clutch	(B)	Jaw clutch
	.(C)	Cone clutch	(D)	Centrifugal clutch
97.		mum stress induced in a d thickness of strip t is:	spiral spring in te	rms of Moment applied M, breadth of
	(A)	12M/bt ²	(B)	4M/bt ²
	(C)	8M/bt ²	(D)	16M/bt ²
98.	In design	of helical springs the spri	ng index is usually	taken as :
	(A)	8	(B)	10
	(C)	12	(D)	16
99.		s induced in the circular s lean coil diameter D and v		sed coil helical spring in terms of axial
	(A)	8WD/πd ⁸	(B)	$12WD$ / πd^3
	(C)	$16WD/\pi d^3$	(D)	$32WD/\pi d^3$
100.	Spring sti	ffness is:		
	(A)	Load per unit deflection		
	(B)	Load carrying capacity of	of the spring	
	(C)	Ratio of mean coil diame	eter to wire diamete	r
	(D)	None.		