038/2016

Maximum: 100 marks

Time: 1 hour and 15 minutes

	_				
1.		of force in S.I. sy	stem of units is :	(D)	V:1
	(A)			(B)	Kilogram
	· (C)	Newton		(D)	Watt
2.	One kg fo	orce is equal to:			
	(A)	9.8 N		(B)	7.8 N
	(C)	8.9 N		(D)	12 N
3.	The angle	e between two fo	orces when the re	sultant is	maximum and minimum respectively
	(A)	180° and 0°		(B)	0° and 180°
	(C)	90° and 180°		(D)	90° and 0°
4.		ultant of two equ the two forces is :		same magr	nitude as either of the forces, the angle
	(A)	30°		(B)	60°
	(C)	90°		(D)	120°
5.		ltant of the two		Q is R. If	Q is doubled, the new resultant is
	(A)	P = Q		(B)	Q = R
	(C)	Q = 2R		(D)	None of these
6.			an angle of 120° er one. The small	the property of the second of the	er force is 40 N and the resultant is
	(A)	20 N		(B)	40 N
	(C)	80 N		(D)	None of these
7.	Concurre	nt forces are thos	e forces whose lin	es of action	n:
	(A)	Lie on the same	line .	(B)	Meet at one point
	(C)	Meet on the sai	ne plane	(D)	None of these
8.	A number	r of forces acting	at a point will be i	in equilibri	ium, if:
	(A)		re equally inclined	l	
	(B)	Sum of all the f			
	(C)	Sum of resolved	l parts in the vert	ical directi	ion and horizontal direction is zero
	(D)	All the forces a	re equally perpend	dicular	

9.	The forces	es, which meet at one point and their lines of action also lie on the same plan	ie, are
	(A)		
	(B)		
	(C)		
	(D)		
10.	A couple p	produces:	
	(A)	Translatory motion	
	(B)	Rotational motion	
	. (C)	Combined translatory and rotational motion	
	(D)	None of the above	
11.	Elasticity	y of a body is:	
	(A)	The property by which a body returns to its original shape after removal load	of the
	(B)	The ratio of stress to strain	
	(C)	The resistance to the force acting	
	(D)	Large deformability as in case of rubber	
12.	The stress	ss in a member subjected to a force is :	
	(A)	Continued deformation under sustained loading	
	(B)		
	(C)	The resistance offered by the material per unit area to a force	
	(D)	The strain per unit length	
13.	The volun	metric strain is the ratio of the:	
	(A)		
	(B)	Change in volume to the original volume	10
	(C)	Change in thickness to the original thickness	
	(D)	Original volume to the change in volume	
14.	The law "	"Stress is proportional to strain within certain limits" is formulated by:	
	(A)	Thomas Young (B) Poisson	
	(C)	Mohr (D) Robert Hook	
15.	Young's M	Modulus is the ratio of the normal stress to the:	
	(A)	Normal strain within elastic limit	
	(B)	Reciprocal of normal strain within elastic limit	
	(C)	Normal strain within proportional limit	
	(D)	Normal strain at yield point	

16.	3. The stress due to temperature change in a member depends on :				
	(A) Length of the member				
	(B)	Supporting con	ditions at the two ends	3	
	(C)	Area of cross se	ection		
	(D)	None of the abo	ove		
17.	The perce	ntage of elongati	on of a material from a	dire	ct tensile test indicates :
	(A)	Ductility		(B)	Elasticity
	(C)	Malleability		(D)	Brittleness
18.	The energ	y stored in a bod	y when strained within	n elas	stic limit is known as :
	(A)	Resilience		(B)	Proof resilience
	(C)	Impact energy		(D)	Strain energy
19.	The Poiss	on's Ratio is the	ratio of :		
	(A)	Lateral elongat	ion to linear elongation	1	
	(B)	Lateral stress t	o linear stress		
	(C)	Lateral strain t	o longitudinal strain		
	(D)	Young's Moduli	us to Modulus of Rigidi	ty	
20.	Modulus	of Rigidity is the	ratio of:		
	(A)	Normal stress t	o normal strain		
	(B)	Shear stress to	shear stain		
	(C)	Poisson's ratio	to ultimate strength in	comp	pression
	(D)	Lateral stress t	o lateral stain		
21.	In order t		natural features such	as v	alleys, rivers, lakes etc. the surveying
	(A)	City surveying		(B)	Location surveying
	(C)	Cadastral surve	eying	(D)	Topographical surveying
22.	The funda	mental principle	of surveying is to worl	k fron	n the:
	(A)	Whole to the pa	rt	(B)	Part to whole
	(C)	Lower level to h	nigher level	(D)	Higher level to lower level
23.	The meth	od of measuring	distance by pacing is cl	niefly	used in:
	(A)	Location survey		(B)	Preliminary surveys
	(C)	Reconnaissance	surveys	(D)	All of these

24.	The instrument attached to the wheel of a vehicle in order to measure the distance travelled is called:					
	(A)	Passometer	(B)	Odometer		
	(C)	Pedometer	(D)	Speedometer		
25.	Direct ra	nging is possible only when the end sta	tions	are:		
	(A)	Close each other	(B)	Not more than 100m apart		
	(C)	Located at highest points in the sea	(D)	Mutually inter visible		
26.	The error	in measured length due to sag of chair	n or ta	pe is known as :		
	(A)	Positive error	(B)	Negative error		
	(C)	Compensating error	(D)	Instrumental error		
27.		position of a point is to located accura cular is set out by means of:	tely by	y a perpendicular offset, the direction of		
	- (A)	Theodolite	(B)	Optical square		
	(C)	Dumpy level	(D)	Planimeter		
28.	In an opti	ical square, the angle between the first	incid	ent ray and the last reflected ray is :		
	(A)	60°	(B)	120°		
	(C)	90°	(D)	150°		
29.	The angle	between the reflecting surfaces of a pr	rism s	quare is :		
	(A)	30°	(B)	60°		
	(C)	75°	(D)	45°		
30.	The horiz	ontal angle between the true meridian	and s	urvey line is called :		
	(A)	Azimuth	(B)	Magnetic bearing		
	(C)	Dip	(D)	Magnetic declination		
31.	The numb	per of reaction components possible at	hing	e on rollers support is :		
	. (A)	2	(B)	1		
	(C)	0	(D)	3		
32.	A simply	supported beam is subjected to a pure i	nome	nt. This will be resisted through:		
	(A)	A moment reaction at hinged end				
	(B)	A moment reaction at hinge on roller	s end			
	(C)	A couple formed by the reactions from	the t	wo supports		
-	(D)	External support capable of resisting	mome	ent which is necessarily to be provided		

6

038/2016

A

33.	A cantilev	ver beam is the or	ne which is supported v	vith:		
	(A)	One end hinge a	and other on rollers			
	(B)	One end fixed a	nd the other on rollers			
	(C)	Both end on rol	lers			
	(D)	One end fixed a	nd the other free			
34.	The bend	ing moment in a l	beam will be maximum			
	(A)	The S.F is zero		(B)	The S.F. is uniform	
	(C)	The S.F is maxi	mum	(D)	None of these	
35.	Points of	contra flexure are	e the points where:			
	(A)	The S.F. is zero		(B)	Where the B.M. changes its sign	
	(C)	The B.M. is zero	0	(D)	The beam is supported	
36.			y, one of the assumpting. This assumption me		that the plane section before Berthat:	nding
	(A)	Strain is unifor	m throughout the bean	1		
	(B)	Stress is propor	tional to the distance f	rom t	the neutral axis	
	(C)	Stress is unifor	m throughout the bean	1		
	(D)	Strain is propor	rtional to the distance f	rom	the neutral axis	
37.	The neutr	ral axis of any sec	ction is:			
	(A)	The axis passin	g through middle point	of th	ne height	
	(B)	The axis about	which the moment of it	nertia	a is minimum	
	(C)	Longitudinal ax	cis of the member			
	(D)	The line of inter	rsection of neutral plan	e wit	th cross section	
38.	Which of	the following sect	tion is the most efficien	t in c	carrying bending moments?	
	(A)	I-section		(B)	Rectangle section	
	(C)	Circular section	1	(D)	T-section	
39.	The maxi	mum shear stres	s will always occur at :			
	(A)	Neutral axis				
	(B)	A fibre in the cr	ross-section depending	on th	e configuration	
	· (C)	The top extrem	e fibre			
	(D)	The bottom ext	reme fibre			
40.	In an I se	ection almost all t	he maximum shear str	ess w	vill occur at:	
	(A)	Top flange		(B)	Bottom flange	
	(C)	Web		(D)	Half the depth of the flange	
Δ			7		038/	2016

41.	When a develop a		ree end, tl	ne maximum compressive stress Shall
	(A)	Top fibre	(B)	Neutral axis
	(C)	Centre of gravity	(D)	Bottom fibre
42.	A beam o	f uniform strength has:		
	(A)	Same bending stress at every sec	tion	
	(B)	Same cross section throughout th	e beam	
	(C)	Same bending moment at every s	ection	
	(D)	Same shear stress at every section	n	
43.	The neut	ral axis of a beam is subjected to —		- stress.
	(A)	Maximum tensile	(B)	Zero
	(C)	Minimum tensile	(D)	Maximum compressive
44.		simply supported rectangular bear developed on the:	m is loade	ed transversely, the maximum tensile
	(A)	Top layer	(B)	Neutral axis
	(C)	Bottom layer	(D)	Every cross-section
45.	A flitched	l beam is used to :		
	(A)	Change the shape of the beam		
	(B),	Effect the saving in material		
	(C)	Increase the cross-section of the	beam	
	(D)	Equalise the strength in tension	and compr	ression
46.	The state of the s	gular beam of length / supported at a deflection occurs :	its two er	nds carries a central point load W. The
	(A)	At the centre	(B)	At the ends
	(C)	At 1/3 from both ends	(D)	None of these
47.	The prod	uct of Young's modulus (E) and mor	nent of in	ertia(l) is known as :
	(A)	Modulus rigidity	(B)	Flexural rigidity
	(C)	Bulk modulus	(D)	Torsional rigidity
48.		uct of the tangential force acting o radius of shaft) is known as :	n the sha	ft and its distance from the axis of the
	(A)	Bending moment	(B)	Torsional rigidity
	(C)	Twisting moment	(D)	Flexural rigidity

8

038/2016

49.	When a sl	haft is subjected to	to torsion, the shear stress induced in the shaft varies from?					
	(A)	Minimum at the	centre to maximum at the circumference					
	(B)	Maximum at the	centre to minimum at the circumference					
	(C)	Maximum at the	e centre to zero at the circumference					
	(D)	Zero at the centr	re to maximum at the circu	mference				
50.	The shear	stress at the cent	tre of a circular shaft under	torsion is:				
	(A)	Zero	(B)	Minimum				
	(C)	Maximum	(D)	Infinity				
51.	Laterite i	s chemically class	ified as:					
	(A)	Calcareous rock	(B)	Argillaceous rock				
	(C)	Siliceous rock	(D)	Metamorphic rock				
52.	Which of	the following is an	example of argillaceous ro	ck?				
	(A)	Kaolin	(B)	Slate				
	(C)	Laterite	(D)	All of these				
53.	Marble is	an example of						
	(A)	Aqueous rock	(B)	Sedimentary rock				
	(C)	Metamorphic ro	ck (D)	Igneous rock				
54.	A first cla	ass brick should ha	ave a minimum crushing st	rength of:				
	(A)	10.5 MN/m ²	(B)	7 MN/m ²				
	(C)	12.5 MN/m ²	(D)	14 MN/m ²				
55.		the following cons		xcess quantity in clay causes the bricks				
	(A)	Alumina	(B)	Silica				
	(C)	Lime	(D)	Alkalies				
56.	Effloresco	ence is caused if:						
	(A)	The alkaline sal	lt is present in the bricks					
	(B)	The clay used for	or making bricks contain py	rite				
	(C)	The water used	for pugging the clay contai	ns gypsum				
	(D)	All of the above						

01.	Quick III	ie is a :		
	(A)	Carbonate of lime		
	(B)	Product left immediately after the c	alcinat	ions of pure limestone
	(C)	Oxide of calcium		
	(D)	Lime quickly treated with water		
58.	The silica	in Portland cement should be:		
	(A)	20 to 25%	(B)	10 to 20%
	(C)	25 to 40%	(D)	40 to 60%
59.	The ceme	enting property in cement is mainly du	ie to :	
	(A)	Silica	(B)	Lime
	(C)	Iron oxide	(D)	Alumina
60.	The slum	p test of concrete is used to measure i	ts:	
	(A)	Tensile and compressive strength	(B)	Impact value
	(C)	Consistency	(D)	Homogeneity
61.	Which of	the following is the most correct estim	ate?	
	(A)	Plinth area estimate	(B)	Cube rate estimate
	(C)	Building cost index estimate	(D)	Detailed estimate
62.		nses of item which do not come und n items are called	ler any	regular head of item and the cost o
	(A)	Lump-sum	(B)	Extras
	(C)	Customary charges	(D)	Contingencies
63.	The quan	tity of Damp Proof Course (D.P.C) is v	vorked	out in:
	(A)	m ²	(B)	m^3
	(C)	m	(D)	limp-sum
64.	The techn	ique of finding the fair price of an exis	sting b	uilding or property is known as :
	(A)	Estimation	(B)	valuation
	(C)	Pricing	(D)	Costing
65.	The annu	al periodic payments made for the pay	ment	of the capital invested is known as :
	(A)	Depreciation	(B)	Sinking fund
	(C)	Annuity	(D)	Solatium

66.	The value	of the dismantled material less the	cost of d	lismantling is called :
	(A)	Salvage value	(B)	Ratable value
	(C)	Book value	(D)	The scrap value
67.	The weigh	ht of cement is generally taken as:		
	(A)	50 kg	(B)	45 kg
	(C)	60 kg	(D)	65 kg
68.	The volur	ne of cement in one bag is:		
	(A)	0.067 m ³	(B)	0.033 m ³
	(C)	0.050 m ³	(D)	0.025 m ³
69.	The appro	eximate weight of one cubic metre of	mild ste	eel is :
	(A)	2400 kg	(B)	14000 kg
	(C)	7850 kg	(D)	1000 kg
70.	The amou	ant required to be deposited by a cont	ractor w	while submitting a tender is known as:
	(A)	Fixed deposit	(B)	Caution deposit
	(C)	Security deposit	(D)	Earnest money deposit
71.	In singly	reinforced beams, steel reinforcement	is prov	ided in:
	(A)	Tensile zone	(B)	Compressive zone
	(C)	Both tensile and compressive zone	(D)	
72.	In a singly	reinforced beam, the effective depth is	s measu	red from the compression edge to the :
	(A)	Tensile edge	(B)	Centre of tensile reinforcement
	(C)	Neutral axis of the beam	(D)	None of these
73.		on in which concrete is not fully str	essed to	o its permissible value when stress in
	(A)	Critical section	(B)	Balanced section
	(C)	Under reinforced section	(D)	Over-reinforced section
74.	The deep	beams are designed for :		
	(A)	Shear force only		
	(B)	Both shear force and bending mome	ent only	
	(C)	Bearing	nie omy	
		Bending moment only		

75.	Shear rei	nforcement is provided in the form of:		
	(A)	Vertical bars		
	(B)	Inclined bars		
	(C)	Combination of vertical and inclined b	ars	
	(D)	All of these		
76.	The longi	tudinal shearing stresses acting on the	surf	ace between the steel and concrete are
	(A)	Bond stresses	(B)	Tensile stresses
	(C)	Compressive stresses	(D)	None of these
77.	Shear mo	dulus of elasticity is also known as :		
	(A)	Modulus of elasticity	(B)	Bulk modulus of elasticity
	(C)	Modulus of rigidity	(D)	Tangent modulus of elasticity
78.	Which of	the following is not a compression mem	ber?	
	(A)	Strut	(B)	Tie
	(C)	Rafter	(D)	Boom
79.	Effective	length of a column is the length between	n the	points of:
	(A)	Maximum moments	(B)	Zero shear
	(C)	Zero moments	(D)	None of these
80.	The buckl	ling load in a steel column is :		
	(A)	Related to the length		
	(B)	Directly proportional to slenderness ra	atio	
	(C)	Inversely proportional to slenderness	ratio	
	(D)	Non-linearly to the slenderness ratio		
81.	Who was	the president of Constituent Assembly?		
	(A)	Dr. Rajendra Prasad	(B)	B.R. Ambedkar
	(C)	M.N. Roy	(D)	B.N. Rao
82.	One of the	e following language is not recognised by	Indi	ian constitution :
	· (A)	Konkani	(B)	Bodo
	(C)	Dogri	(D)	Tulu

12

A

038/2016

83.					
	(A)	Jawaharlal Neh	ru	(B)	B.R. Ambedkar
	(C)	Dr. Radhakrishr	nan	(D)	Moulana Abul Kalam Azad
		1 -1 - 479			
84.		shed sati?		(T))	T - I William Dan Hat
	(A)	Raja Ram Moha	n Koy	(B)	Lord William Bendict
	(C)	Lord Curzon		(D)	Lord Canning
85.	Who was	the leader of 1921	Malabar Rebellion?		
	(A)	Vakkom Abdul I	Kader	(B)	K. Madhavan Nair
	(C)	Ali Musliyar		(D)	Syed Fazal Pookoya Thangal
86.	Who is th	a author of "Oru T	Theruvinte Katha"?		
00.	(A)	S.K. Pottekkad	nordymoc rasma .	(B)	Vaikom Mohamed Basheer
	(C)	Uroob		(D)	Ponkunnam Varkey
	(0)				
87.	Kuruchia	Revolt was in:			
	(A)	1822		(B)	1832
	(C)	1802	9 1 1 . 1.	(D)	1812
88.	V.T. Batta	athirippad stood f	or the emancipation	of:	
	(A)	Nadar Women		(B)	Namboodiri Women
	(C)	Nair Women		(D)	Ezhava Women
00	NO. : 41	e author of "Kund	lalininnattu ⁿ ?		
89.		Kumaran Asan		(B)	Vailopilli Sreedhara Menon
	(A)	Sree Narayana		(D)	Vagbadanandha
	(0)	Bree Ivarayana	Guita	(-)	+
90.	Who is th	e Kerala Minister	for information Tec	hnolog	y?
	(A)	K. Babu		(B)	P.K. Kunbalikutty
	(C)	Thiruvanchur I	Radhakrishnan	(D)	K.C. Joseph
91.	Which is	the largest consti	tution in the world?		
	(A)	American	S. E. THE	(B)	British
	(C)	Swedish		(D)	Indian
	85 50				

92.	Prime Mi	inister's office situates in :		
	(A)	South Block	(B)	North Block
	(C)	Central Block	(D)	West Block
93.	Who was	the first Chief Editor of "Mat	hrubhoomi"?	
	(A)	N.V. Krishna Varier	(B)	U.P. Gopala Menon
	(C)	K.P. Kesava Menon	(D)	
94.	The place	where Gandhiji delivered his	first speech in	Kerala:
	(A)	Kochi	(B)	Ottappalam
	(C)	Guruvayur	(D)	Kozhikode
95.	Headquar	rters of ISRO :		
	(A)	Bangalore	(B)	Thumba
	(C)	Hyderabad	(D)	Sriharikota
96.	'Arangu F	Kanatha Nadan' is the autobio	graphy of :	
	(A)	N.N. Pillai	(B)	Malayattoor Ramakrishnan
	(C)	Thikkodiyan	(D)	C.J. Thomas
97.	Expand N	TAAC:		
	(A)	National Assessment and Ac	creditation Co	uncil
	(B)	National Assessment and Af	filiation Counc	il
	(C)	National Authorisation and	Affiliation Cou	neil
	(D)	National Accreditation and	Assessment Co	uncil
98.	Which is t	he Headquarters of Nair Serv	rice Society?	
	(A)	Varkala	(B)	Chengannur
	(C)	Kottayam	(D)	Perunna
99.	'Ayyankal	i' stood for the social upliftme	nt of:	
	(A)	Pulayas	(B)	Viswakarmas
	(C)	Ezhavas	(D)	Nadars
100.	Which is t	he TV channel of Kerala Educ	ation Departm	ent?
	(A)	Edusat	(B)	Victors
	(C)	IT @ School	, (D)	Vidyarangam
			177	