Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	The distr	ibution of electrons in the con	duction band is	given by:	
	(A)	(density of quantum states) × (energy of a	state)	
	(B)	(density of quantum states)	× (probability a	a state is occupied)	
	(C)	(energy of quantum states)	× (probability a	state is occupied)	
	(D)	(energy of quantum states)	× (chemical pot	ential of a state)	
2.	Temperat	ture coefficient of diode at roo	m temperature	is	
	(A)	-1.22 mV/° C	(B)	−1.42 mV/° C	
	(C)	−1.62 mV/° C	(D)	−1.82 mV/° C	
3.	When the	reverse bias increases for a c	liode, the PN ju	nction capacitance :	
	(A)	Increases, exhibiting invers	e square relatio	n	
	(B)	Decreases, exhibiting invers	se square relati	on	
	(C)	Decreases, exhibiting inverse square root relation			
	(D)	Increases, exhibiting invers	e square root re	lation	
4.	are applie	ed to this semiconductor. At t action band is non-zero becaus	temperatures a se :	equilibrium. No external force bove 0 K, the electron concen	tration in
	(A)	some electrons from dopant energy	atoms will ove	ercome the bandgap by gained	i thermal
	(B)	some electrons from the co	nduction band	will overcome the bandgap	by gained
	(C)	some electrons from dopant thermal energy	atoms will ove	ercome the ionization energy	by gained
	, (D)	some electrons from the v	valence band w	vill overcome the bandgap b	y gained
5.		FET has the following para t off voltage is :	meters. $I_{DSS} = 2$	0 mA, Pinch off voltage = 5V.	The gate
	(A)	-5 V	(B)	5 V	
	(C)	10 V	(D)	-10 V	
6.	The capa		ard biased bas	e emitter terminals of a tra	nsistor is
	(A)	Depletion Capacitance	(B)	Drift Capacitance	

(D)

Doping Capacitance

Diffusion Capacitance

(A)	Output resistance increases	(B)	Input resistance increases
(C)	Input resistance decreases	(D)	Output resistance decreases
		creases as	the drain source voltage increases. Th
(A)	Hot electron effect	(B)	Channel length Modulation
(C)	Base width modulation	(D)	Sub threshold conduction
		nat value o	of V _{DS} will cause the electrons to reach
(A)	1 V	(B)	5 V
(C)	10 V	(D)	15 V
In the dev	vices given below, maximum switch	ning speed	is available with:
(A)	SCR	(B)	POWER MOSFET
(C)	IGBT	(D)	DIAC
The volta	age gain for a differential ampl $K \Omega$, $R_0 = 100 \Omega$, $R_S = 10 K \Omega$ as	ifier, with	the following specification A= 100 000 Ω :
(A)	19.15 dB	(B)	38.3 dB
(C)	57.45 dB	(D)	76.6 dB
The intrin	nsic voltage gain, μ_f of the BJT is	: .	
(A)	$g_m * r_o$	(B)	$g_m*(1+r_o)$
(C)	$g_m * (1-r_o)$	(D)	$g_m * (r_0 / (1 - r_o))$
If ground	is applied to the (+) terminal of ar	inverting	op-amp, the (-) terminal will:
* (A)	not need an input resistor	(B)	be virtual ground
(C)	have high reverse current	(D)	not invert the signal
Terminal	current gain for the common emit	ter amplifi	ier is :
(A)	ratio of Collector current to Base	current	
(B)	ratio of current delivered to load	to current	supplied to base
(C)	β of the transistor		
(D)	all the above		
	(C) In a MOS phenomer (A) (C) A MOSFI saturation (A) (C) In the dev (A) (C) The volta Rid = 100 (A) (C) The intrin (A) (C) If ground (A) (C) Terminal (A) (B) (C)	(C) Input resistance decreases In a MOSFET, the drain current slightly Incomenon is known as: (A) Hot electron effect (C) Base width modulation A MOSFET has a channel length 1μm. What saturation velocity: (A) 1 V (C) 10 V In the devices given below, maximum switch (A) SCR (C) IGBT The voltage gain for a differential ample Rid = 100 K Ω, Ro = 100 Ω, Rs = 10 K Ω at (A) 19.15 dB (C) 57.45 dB The intrinsic voltage gain, μ _f of the BJT is (A) g _m * r _o (C) g _m * (1-r _o) If ground is applied to the (+) terminal of at (A) not need an input resistor (C) have high reverse current Terminal current gain for the common emit (A) ratio of Collector current to Base (B) ratio of current delivered to load (C) β of the transistor	(C) Input resistance decreases (D) In a MOSFET, the drain current slightly Increases as phenomenon is known as: (A) Hot electron effect (B) (C) Base width modulation (D) A MOSFET has a channel length $1\mu m$. What value is saturation velocity: (A) 1 V (B) (C) 10 V (D) In the devices given below, maximum switching speed (A) SCR (B) (C) IGBT (D) The voltage gain for a differential amplifier, with $R_{id} = 100 \text{ K} \Omega$, $R_0 = 100 \Omega$, $R_S = 10 \text{ K} \Omega$ and $R_L = 1$, (A) 19.15 dB (B) (C) 57.45 dB (D) The intrinsic voltage gain, μ_f of the BJT is: (A) $g_m * r_o$ (B) (C) $g_m * (1-r_o)$ (D) If ground is applied to the (+) terminal of an inverting (A) not need an input resistor (B) (C) have high reverse current (D) Terminal current gain for the common emitter amplification of Collector current to Base current (B) ratio of Current delivered to load to current (C) β of the transistor

Due to Early effect, for a transistor:

15.	Negative feedback in transistor amplifier has the advantage of :						
	(A)	Extended bandwidth	(B)	Improved loop gain			
	(C)	Increased harmonic distortion	(D)	All the above			
16.	The feedb	ack in an amplifier circuit reduces th	ne gain t	o 50%. The feedback factor is :			
		-1.5 dB	(B)	-0.5 dB			
		−3 dB	(D)	1.5 dB			
17.	For an LO	tuned circuit, :					
	(A)	When the capacitor energy is maxim					
	(B)	When the capacitor current is maxi					
	(C)	When the capacitor voltage is maxi					
	(D)	When the capacitor voltage is maxi	mum, th	ne inductor energy is minimum			
18.	Fastest of	fall logic families :					
	(A)	Emitter coupled logic	(B)	Resistor Transistor logic			
	(C)	CMOS logic	(D)	Transistor - Transistor logic			
19.	AD 670 is	ia:					
	(A)	Successive approximation ADC	(B)	Dual slope ADC			
	(C)	Counter ramp ADC	(D)	Flash ADC			
20.		e to random emission of electrons as known as :	sociated	with charge flowing across a potential			
	(A)	Thermal Noise	(B)	White Noise			
	(C)	Cosmic Noise	(D)	Shot Noise			
21.		ast radio transmitter radiates 5 kW er power is :	power w	then the modulation percentage is 60%.			
	(A)	1.19 kW	(B)	3.12 kW			
	(C)	4.23 KW	(D)	6.46 kW			
22.	The adva	ntage of DSB over SSB full carrier A	M is:				
	(A)	(A) Less available channel space					
	(B)	More stable transmitter gives bett	er recep	tion			
	(C)	More power to transmit same sign	al				
	(D)	Signal is less resistant to noise					

23.	Double a	side band modulator is used to	obtain:	
	(A)	Double side band suppresse	d carrier sign:	al
	(B)			
	(C)			
	(D)	Single side band signal		
24.	VSB mod	dulation is preferred in TV beca	ause :	
	(A)	it avoids phase distortion at	low frequenci	es
	(B)	it reduces the bandwidth red	The second secon	
	(C)	it results in better reception		
	(D)	all the above		
25.	Which of	the following is the indirect w	ay of FM gene	ration?
	(A)	Reactance bipolar transistor	modulator	
	(B)	Armstrong modulator		
	(C)	Varactor diode modulator		
	(D)	Reactance FM modulator		
26.	An FM si half. The	gnal with a deviation ∂ is pas- deviation in the output of the	sed through a	mixer and has its frequency reduced to
	(A)	∂/2	(B)	2∂
	(C)	∂/4	(D)	ð
27.	A 1000 k waves. W	Hz carrier is simultaneously m hich of the following frequency	nodulated with is least likely	n 300 Hz, 800 Hz and 2 kHz audio sine to be present in the output?
	(A)	1002 kHz	(B)	1000 kHz
	(C)	999.2 kHz	(D)	998.0 kHz
28.	In the spe	ctrum of a FM wave :		
	(A)	The carrier frequency disappe	ears when the	modulation index is large
	(B)	The amplitude of any side bar		
	(C)	The total number of side band		
+=	(D)			rease in modulation frequency
29.	Amplitude	limiting action is achieved in	. ,	
	(A)	Foster-Seely discriminator	(B)	Quadrature Detector
	(C)	PLL demodulator	(D)	Ratio detector

30.	Consider t	he following:					
	1.	Generation of SSB signals					
	2.	Design of minimum phase type filter	rs				
	3.	Representation of band pass signals					
	Whic	ch of the above applications is Hilber	t transfe	orm used?			
	(A)	1 only	(B)	1,2 and 3			
	(C)	1,2 only	(D)	1 and 3			
31.	Main disa	dvantage of PCM is:					
	(A)	It needs large bandwidth	(B)	It is incompatible with FDM			
	(C)	High error rate	(D)	In compatible with time sharing			
32.	In phase s	shift keying the input signal is					
	(A)	$s_1(t) = A\cos\omega_0 t$ and $s_2(t) = -A\cos\omega_0 t$	qt .				
	(B)	$s_1(t) = s_2(t) = A\cos\omega_0 t$					
	(C)	(C) $s_1(t) = A\cos\omega_0 t$ and $s_2(t) = A\cos(\omega_0 t + \pi/2)$					
	(D)	$s_1(t) = A \cos \omega_0(t)$ and $s_2(t) = -A \cos \omega_0(t)$	$s(\omega_0 t + \pi$	/2)			
33.	Rather th transmiss as:	sion bit-rate by sending the difference	e betwe	ple, it is possible to achieve a smaller en consecutive samples. This is known delta modulation			
	(A)	delta-sigma modulation	(B)				
	(C)	adaptive delta modulation	(D)	differential PCM			
34.	The impu	lse response of a linear interpolator i	s:				
	(A)	A square pulse	(B)	Rectangular pulse			
	(C)	Linear ramp	(D)	Triangular pulse			
35.	Compand	lor, in digital communication refers to	0:				
	(A)	Compressor	(B)	Expander			
	(C)	Both (A) and (B)	(D)	None of the above			
36.	Slotted fr	requency hopping is:		A Company of the Comp			
30.	(A)	Synchronous frequency hopping	(B)	Sequential frequency hopping			
	(C)	Random frequency hopping	(D)	Asynchronous frequency hopping			
37.	Bit lengt	h of a pseudo noise code, having m st	age shif	t register is :			
01.	(A)	2 ^m	(B)	2 ^{m-1}			
		$2^{m}-1$	(D)	2^{m+1}			
	(C)	4 -1					

38.	The rate	of change at the output	of the modulator is :		
	(A)		(B)		
	(C) Deviation rate	(D)		
39.	What is	false for a Frequency Hop	oping Spread spectr	um?	
	(A)				
	(B)	It is affected by near fa	ar problem		
	(C)	It has multiple frequen	ncy bands		
	(D)	The carrier frequency	randomly changes a	mong different slots	
40.	The ratio	o of the bandwidth of spr	readed signal to the	bandwidth of the unspreaded signal	l i
	(A)	Band rejection ratio	(B)	Band width factor	
	(C)	Processing gain	(D)	Processing factor	
41.	In a broa coupling 25 MHz	circuit is 100. If the in	eceiver having no RF termediate frequen	amplifier, the loaded Q of the anten cy is 455 kHz. The rejection ratio	na a
	(A)	1.116	(B)	1.386	
	(C)	2.116	(D)	2.386	
42.	conductii	tenna consisting of a 50 ng ground plane. It is base una in ohms is :	meter long vertica e fed at a frequency	d conductor operates over a perfect of 600 kHz. The radiation resistance	dy
	(4)	$2\pi^2$		π^2	
	(21)	$\frac{2\pi^2}{5}$ $\frac{4\pi^2}{5}$	(B)	5	
	(0)	$4\pi^2$			
	(0)	5	(D)	$20\pi^2$	
13.	Diffractio	n of electromagnetic wave	es:		
	(A)	is caused by reflections	from the ground		
	(B)	arises only with spheric			
	(C)	will occur when the way	e pass through a lar	ge slot	
	(D)	will occur around the ed			
4.	The filter frequency	which provides full luinformation:	iminance bandwidt	h without destroying precious hig	h
	(A)	Trap filter	(B)	Comb filter	
	(C)	Chroma Filter		Luma Filter	

45.	White dot	s and cross latch patterns are called :		
	(A)	Divergence patterns	(B)	Convergence patterns
	(C)	Linear patterns	(D)	Back ground patterns
46.	Magnitud	e of the signal formed by Q and I repr	esents :	
2,55		Hue	(B)	Brightness
	(C)	Contrast	(D)	Color Saturation
47.	JPEG 200	00 standard uses :		
	(A)	DCT transformation	(B)	Hilbert transformation
	(C)	Wavelet transformation	(D)	DST transformation
48.	The dispe	rsion is caused by the shape and inde	x profile	e of the fibre core is :
	(A)	Waveguide dispersion	(B)	Modal dispersion
	(C)	Chromatic dispersion	(D)	Material dispersion
49.	Numerica	al Aperture for a multimode fiber is in	the rar	nge of:
	(A)	0 to 0.1	(B)	0.1 to 0.2
	(C)	0.2 to 0.3	(D)	0.3 to 0.4
50.	Noise cau		of the	optical signal back into the laser cavity
	(A)	Relative Intensity noise	(B)	Phase noise
	(C)	Drift	(D)	Intercavity noise
51.	The I/O p	ort that does not have a dual-purpose	role is	
	(A)	Port 3	(B)	Port 2
	(C)	Port 1	(D)	Port 0
52.	After res	et, SP register is initialized to address	B:	
		6H	(B)	7H
	(C)		(D)	9H
53.	Which o	f the following statement is incorre RESET is applied:	ect with	watchdog control register, when an
	(A)	OPE	(B)	Watchdog run bit is set to ON
	(C)		(D)	Auto load takes place
54.	When 80	51 Microcontroller is interfaced with	RS 232	
	(A)	1 10		
-	(B)	1: 1: 1:		
	(C)	Line converter is connected in betw	een	
	(D)	V to F converter is connected in bet	ween	

55.	Select the	e correct statement for 8051 har	dware:		
	(A)	CPU 8 Bit, PC 16 Bit, DPTR 8	bit, PSW 16	Bit, SP 16 Bit	
	(B)	CPU 8 Bit, PC 8 Bit, DPTR 16			
	(C)	CPU 8 Bit, PC 16 Bit, DPTR 8			
	(D)	CPU 8 Bit, PC 16 Bit, DPTR 1			
56.	With the Number of	help of RISC Architecture, PIC of instructions that CPU can rec	16F887 Micr ogonize is :	ocontroller has reduced instruction set	
	(A)	25	(B)	35	
	(C)	45	(D)	55	
57.	The ADC	0804 has — resolution			
	(A)	32 bit	(B)	16 bit	
	(C)	8 bit	(D)	4 bit	
58.	An altern	ate function of port pin P3.0 (RX	D) in the 80	51 is:	
	(A)	serial port input	(B)	serial port output	
	(C)	memory write strobe	(D)	memory read strobe	
59.	can monitor everything that goes in on-board CPU gives complete visibility into				
	(A)	Debugger	(B)	Simulator	
	(C)	In Circuit Simulator	(D)	Logic Analyser	
60.	ARM Proc	essor Cortex A8,processor mode	IRQ refers t	0	
	(A)	General purpose interrupt hand			
	(B)	Fast interrupt handling			
	(C)	A secure mode for TrustZone			
	(D)	A protected mode for the Opera	ting System		
61.	N point DI	T of the sequence $\partial(n)$ is:			
	(A)	$\sum\nolimits_{n=0}^{N-1}\partial(n)W^{nk}=1$	(B)	$\sum\nolimits_{n=0}^{N}\partial(n)W^{nk}=1$	
	(C)	$\sum\nolimits_{n=0}^{N-1} \partial(n) W^{-nk} = 1$	(D)	$\sum\nolimits_{n=1}^{N-1}\partial(n)W^{nk}=1$	

(B) X(N-K)

(C) (X(K-N))/N

62. If x(n) is having DFT X(K), then the DFT of x(N-n) is:

(D) (X(N-K))/N

63.	21 tap lin	ear-phase FIR filter operating at a 1 kl	Hz rat	e has delay :
	(A)	2 ms	(B)	4 ms
	(C)	8 ms	(D)	10 ms
64.	Resampli	ng is usually done :		
	(A)	If sampling frequency is less than Ny	quist	frequency
	(B)	If sampling frequency is equal to Nyq	uist fr	requency
	(C)	To interface two systems which have	equal	sampling rates
	(D)	To interface two systems which have	differe	ent sampling rates
65.	Scaling in	a digital filter is needed to:		
	(A)	Avoid overflow	(B)	Avoid noise due to round off errors
	(C)	Both (A) and (B)	(D)	None of the above
66.	The TMS	320C6713 processor supports	pr	ioritized interrupts.
	(A)	8	(B)	12
	(C)	16	(D)	20
67.	In TDM t	o FDM conversion, the operation needs	ed are	
	(A)	Correlation and filtering	(B)	Correlation and interpolation
	(C)	Interpolation and correlation	(D)	Interpolation and modulation
68.	For an FI	R filter design, pass band lower freque	ncy is	
	(A)	Zero	(B)	Half the output rate
	(C)	Half the passband upper frequency	(D)	None of the above
69.	Which is	not a disadvantage of IIR filter?		
	(A)	They are more susceptible to problem	ns of fi	nite-length arithmetic
	(B)	They are harder (slower) to impleme	nt usi	ng fixed-point arithmetic
	. (C)	They don't offer the computational a		
	(D)	They can't achieve a given filtering c	haract	eristic using less memory
70.	For 8051	Micro controller ORG is used to:		
	(A)	Do the logic OR operation	(B)	Offset Register with a byte
	(C)	Define address	(D)	Clearing Odd flag register
71.	PWM sw	itching is preferred in voltage source in	iverte	
	(A)	Controlling output voltage	(B)	Reducing filter size
	(C)	All the above	(D)	None of the above

72.	For a giv	en torque, increasing diverter- re	esistance of	a dc series motor :
	(A)			
	(B)			
	(C)	Increases its speed, reducing a	rmature cu	rrent
	(D)	Increases its speed, but armat	ure current	remains the same
73.	Triac car	be used in :		
	(A)	ac voltage regulator	(B)	inverter
	(C)	cycloconverter	(D)	solid state type of devices
74.	A boost i	regulator has an input voltage o	f 5V and a	verage output voltage of 15V. The duty
	(A)	2/3	(B)	1/3
	(C)	5/2	(D)	15/2
75.	Stepper r	notors are mostly used for:		
	(A)	high power requirements	(B)	control system applications
	(C)	very high speed of operation	(D)	very low speed of operation
76.	The most	suitable device for high frequenc	y inversion	in SMPS is:
	(A)	BJT	(B)	IGBT
	(C)	MOSFET	(D)	GTO
77.	In a self-c	ontrolled synchronous motor fed	from a vari	able frequency converter :
	(A)	The rotor poles invariably have		
	(B)	The frequency of stator decides	the rotor sp	peed .
	(C)	There are starting problems		
	(D)	The speed of rotor decides rotor	frequency	
78.	An ideal of 3 Ω and a ratio of 4/2	in inductance of 9mH from a 50 \	of 500 Hz battery. T	supplies a load having a resistance of he mean value of load voltage for on/off
	(A)	200 V	(B)	25 V
	(C)	4 V	(D)	40 V
79.	The most a 25 Hz is:	suitable solid state converter for	controlling	the speed of three- phase cage motor at
	(A)	Cycloconverter	(B)	Current source inverter
	(C)	Voltage source inverter	(D)	Load commutated inverter
046/	2016		12	A

80.	A four quadrant chopper cannot be operated as:					
	(A)	One quadrant chopper	(B)	Cycloconverter		
	(C)	Inverter	(D)	Bi-directional rectifier		
81.	Who start	ed a magazine called "Sivayoga	Vilasam"?			
	(A)	Brahmananda Sivayogi	(B)	Vagbhatananda		
	(C)	T.K. Madhavan	(D)	A.K. Gopalan		
82.	The first a	annual session of the SNDP havi	ng been held	lat:		
	(A)	Aruvippuram	(B)	Kollam		
	(C)	Chempazhanthi	(D)	Kochi		
83.	The head	quarters of the Kerala Press Aca	damy:			
	(A)	Thiruvananthapuram	(B)	Thrissur		
	(C)	Kozhikodu	(D)	Kochi		
84.	Who was	the first women High court Judg	ge in all over			
	(A)	Meera kumar	(B)	Fathima Beevi		
	(C)	Anna Malhothra	(D)	Annachandi		
85.	Who was	known as "Sarva Vidyadi Rajan'	?	*		
	(A)	Sree Narayana Guru	(B)	Kumaranasan		
	(C)	Chattampi Swamikal	(D)	K. Kelappan		
86.	The first	person to get Dadasaheb Phalke	Award from	Kerala:		
	(A)	Adoor Gopala Krishnan	(B)	Premji		
	(C)	Shaji N. Karun	(D)	P.J. Antony		
87.	Which on	e of the following was not the wo	ork of Dr. A.	P.J. Abdulkalam?		
	(A)	Agnichirakukal				
	(B)	Indomitable spirit				
	(C)	Images and insight				
	(D)	India – 2020 A vision for New	Milleniyam			
88.	Malayali	memorial was submitted to the	maharaja of			
	(A)	June 1, 1891	(B)	January 1, 1891		
	(C)	July 10, 1890	(D)	January 10, 1890		
89.	The prese	ent form of Kathakali was design	ned by :			
	(A)	Vallathol				
	(B)	Unnayi Variyar				
	(C)	Kottayam tampuran				
	(D)	Kodungallur Kunhikkuttan T	hampuran			

90.	Who calle	d Ayyankali "Pulaya Raja"?		
	(A)	Gandhi	(B)	Sree Narayana Guru
	(C)	Ambedkar	(D)	Dr. Palpu
91.	"Athmaka	athakku Oru Amukham" is the autobi	ograph	y of:
	(A)	Lalitha prabhu	(B)	Arya pallam
	(C)	Lalithambika Antharjanam	(D)	Thakazhi
92.	Name the	first state in India to install earth qu	iake ea	rly warning system :
	(A)	Delhi	(B)	Uttarakhand
	(C)	Manipur	(D)	Maharashtra
93.	Vala sam	udaya Parishkarani sabha was starte	d by:	
	(A)	Sahodaran Ayyappan	(B)	K. Kelappan
	(C)	K.P. Karuppan	(D)	Ayyankali
94.	Which sta	ate introduced compulsory voting in lo	cal Go	vernments elections?
	(A)	Gujarath	(B)	Rajastan
	(C)	Kerala	(D)	Tamil Nadu
95.	Uniform (Civil Code was contained in which art	icle :	
	(A)	Article 14	(B)	Article 41
	(C)	Article 24	(D)	Articel 44
96.	Which pro	ogramme aims to achieve slum free In	dia?	
	(A)	Indira Awas Yogana	(B)	Jan Dhan Yogana
	(C)	Roshtriya Swasthya Bhim Yogana	(D)	Rajiv Awas Yogana
97.	Which of	the following is the famous novel of S.	K. Pot	tekkadu?
	(A)	Visha Kanyaka	(B)	Nellu
	(C)	Pandavapuram	(D)	Marana certificate
98.	The prear	mble to our constitution includes all en	xcept:	
	(A)	Fraternity	(B)	Adult franchise
	(C)	Equality of status	(D)	Justice
99.	Who was	known as "Sarasa druda kavi kireeda	mani"	?
	(A)	Kerala varma valiya koyi tampuran	(B)	Ulloor
	(C)	Chandu menon	(D)	Kodungallur Kunhikkuttan Tampuran
100.	India acce	epted the idea of Judicial Review from	:	
	(A)	Britain	(B)	USA
	(C)	Australia	(D)	Canada