Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	Hooke's la	w is valid:			
	(A)	Only above ela	stic limit	(B)	Only within elastic limit
	(C)	Only within pl	astic limit	(D)	Till breaking of substance
2.	The bendi	ng moment on a	section is maximum w	here s	hear force is:
	(A)	Zero		(B)	Minimum
	(C)	Changing sign		(D)	Maximum
3.	The bendi	ng moment diag	gram for a cantilever car	rying	uniformly distributed load will be:
	(A)	A triangle		(B)	A parabola
	· (C)	A cubic parabo	la	(D)	A rectangle
4.	The mome	ent of inertia of	a circular section, about	its a	xis, is given by :
	(A)	$\frac{\pi(D)^4}{64}$		(B)	$\frac{\pi(D)^4}{32}$
	(C)	$\frac{\pi(D)^4}{64}$ $\frac{\pi(D)^4}{16}$		(D).	$\frac{\pi(D)^4}{32}$ $\frac{\pi(D)^4}{8}$
5.	A plane w	hich is not subj	ected to shear stress is	knowi	n as:
	(A)	Compound pla	ne	(B)	Simple plane
	(C)	Non-shear pla	ne	(D)	Principal plane
6.	The unit	of torque in SI u	nits is :		
	(A)	kg cm		(B)	Newton-metre (N m)
	(C)	kg/cm ²		(D)	None
7.	In a canti	lever beam tens	ile reinforcement is pro	vided	:
	(A)	On top of bean	n	(B)	On bottom of beam
	(C)	At middle of b	eam	(D)	On top and bottom of beam
8.	Euler's fo	rmula is not val	id for mild steel column	wher	n slenderness ratio is :
	(A)	More than 80		(B)	More than 120
	(C)	Less than 80		(D)	More than 30

9.	The thickness of cylindrical shell is designed on the basis of:			sis of:
	(A)	Longitudinal stress	(B)	Bending stress
	(C)	Circumferential stress	(D)	Hoop stress
10.	The stres	s at which a material fractures un	der large n	umber of reversal of stresses is called:
	(A)	Residual stress	(B)	Creep
	(C)	Endurance limit	(D)	Ultimate stress
11.		e diameter is doubled, then the sti		, other quantities remaining the same, e spring when compared to the original
	(A)	Twice	(B)	4 times
	(C)	8 times	(D)	16 times
12.	A soil hav	ving uniformity coefficient less tha	n 4 is calle	d:
	(A)	Uniform	(B)	Fine
	(C)	Coarse	(D)	Well graded soil
13.	The maxi	mum size of clay particle is:		
	(A)	0.1 mm	(B)	0.03 mm
	(C)	0.002 mm	(D)	0.0002 mm
14.	The ratio	between the total volume of voids	and the tot	al volume of solids is called :
	(A)	Void ratio	(B)	Porosity
	(C)	Void fraction	(D)	Solid fraction
15.	The most	accurate method of determining th	ne water co	ntent in a sample of soil is:
	(A)	Sand bath method	(B)	Calcium carbide method
	(C)	Oven drying method	(D)	Alcohol method
16.	Wet sieve sieve oper		e if nearly	all soil particles pass through square
	· (A)	0.075 mm	(B)	0.045 mm
	(C)	0.212 mm	(D)	0.300 mm
17.	The plasti	city index is equal to :		
	(A)	Liquid limit - Shrinkage limit	(B)	Liquid limit - Plastic limit
	(C)	Plastic limit – Liquid limit	(D)	Plastic limit - Shrinkage limit

18.	If during a permeability test on a soil sample with a falling head permeameter equal time intervals are noted for drop of head from h_1 to h_2 and again from h_2 to h_3 then which one of the following relation would hold good?					
	(A)	$(h_1 - h_2) = (h_2 - h_2)$	3)	(B)	$h_3^2 = h_1 h_2$	
	(C)	$h_1^2 = h_2 h_3$		(D)	$h_2^2 = h_1 h_3$	
19.	The soils	most susceptible	to liquefaction as	re:		
	(A)	Saturated dense	sand			
	(B)	Saturated fine a	nd medium san	ds of unifor	m particle size	
	. (C)	Saturated clays	of uniform size			
	(D)	Saturated grave	l and cobbles			
20.	The angle between the horizontal and the maximum slope that a soil assumes through natural process is called:					
	(A)	Angle of interna	l friction	(B)	Cohesiveness	
*	(C)	Angle of repose		(D)	Hydraulic gradient	
21. A saturated clay layer with single drainage face takes 4 years to attain 50% consolidation. If the clay layer had double drainage, then the time taken to attain 50 of consolidation is:						
	(A)	1 year		(B)	2 years	
	(C)	4 years		(D)	8 years	
22.	A compar	atively sudden red	luction in volum	e of a soil n	nass under an applied load is called :	
	(A)	Primary compre	ssion	(B)	Secondary compression	
	(C)	Initial consolidat	tion	(D)	Initial compaction	
23.		hat states that lar lraulic gradient is		saturated s	oil, the velocity is directly proportional	
	(A)	Reynold's law		(B)	Bligh's law	
	(C)	Lacey's law		(D)	Darcy's law	
24.	A foundat	ion is considered a	as shallow if its	depth is:		
	(A)	Equal to or less t	than its width	(B)	Less than 1 meter	
	(C)	Greater than its	width	(D)	Greater than 1 meter	

25.	A grillag	e foundation is essentially a:					
	(A)	Shallow foundation	(B)	Deep foundation			
	(C)	Spread foundation	(D)	Pile foundation			
26.	Maximu	m bearing capacity can be expecte	d from:				
	(A)	Laminated rocks	(B)	Compact coarse sand			
	(C)	Soft rocks	(D)	Granite rocks			
27.	The type	of foundation suitable for under v	vater struc	tures is			
	(A)	Cast in situ concrete piles	(B)	Pier foundation			
	(C)	Continuous footing	(D)	Stepped foundation			
28.	The most	The most common sampler used for obtaining a disturbed sample of soil is:					
	(A)	Split spoon sampler	(B)	Thin wall shelby tube sampler			
	(C)	Open drive sampler	(D)	Piston sampler			
29.	The ultir	nate bearing capacity of a surfa	ce strip fo	ooting on clay, according to Terzaghi's			
	(A)	5.7 c	(B)	5.14 c			
	(C)	$q_u B$	(D)	9 c			
	Who	ere $c = \text{unit cohesion}, q_u = \text{unconfi}$	ned compre	essive strength, and B = width of footing			
30.	Negative	skin friction on a pile under verti	cal compre	ssive load acts :			
	(A)						
	(B)						
	(C)						
	(D)	Downwards and maintains the s	same load o	carrying capacity of the pile			
31.	An ideal f	luid is one which :					
	(A)	Obeys Newton's law of viscosity					
	(B)) Flows through pipes with least friction					
	(C)	Is frictionless and incompressible	e				
	(D)	Satisfies continuity equation					
32.	For a fluito be:	d in motion, if pressure at a poir	it is same	in all directions, then the fluid is said			
	(A)	A real fluid	(B)	A non Newtonian fluid			
	(C)	An ideal fluid	(D)	A Newtonian fluid			

33. The point at which the resultant pressure on an immersed surface acts on it is kno			rsed surface acts on it is known as:	
	(A)	Centre of gravity	(B)	Centre of depth
	(C)	Centre of immersed surface	(D)	Centre of pressure
34.	A flow in equal is c		les at a	all sections of the pipe or channel are
	(A)	Uniform flow	(B)	Laminar flow
	(C)	Turbulent flow	(D)	Unsteady flow
35.	Bernoulli	s theorem deals with the principal of	conserv	ration of:
	(A)	Momentum	(B)	Energy
	(C)	Mass	(D)	Force
36.	Pitot tube	is a device used in the Flowing fluid	for mea	surement of:
	(A)	Discharge	(B)	Pressure
	(C)	Velocity	(D)	Kinetic energy
37.	A hydrogr	raph is a plot of :		
	(A)	Precipitation against time	(B)	Surface run off against time
	(C)	Recorded run off against time	(D)	Stream flow against time
38.	Unit hydr	rograph method for flood estimation is	applie	d to:
	(A)	Large basins	(B)	Hilly areas
	(C)	Small and medium sized basin	(D)	All of the above
39.	An aquife	er that is confined at bottom and top is	:	
	(A)	Partially confined aquifer	(B)	Confined aquifer
	(C)	Unconfined aquifer	(D)	Semi-confined aquifer
40.	Weirs cor	astructed on permeable foundation are	likely	to fail due to :
	(A)	Piping or uplift	(B)	Cracking
	(C)	Crushing	(D)	Sliding
41.	Rabi crop	os pertain to :		
	(A)	Monsoon season	(B)	Summer season
	(C)	Winter season	(D)	Autumn season

42.	. Duty of	a canal water is express	ed in:	
	(A)	Cumecs	(B) Centimetres
	(C)	Millimetre	(D	
43.	Element	ary profile of a gravity of	lam is:	
	(A)	Trapezoid	(B)	Right angled triangle
	(C)	Square	(D)	
44.	The mea	asure of the amount, t in water, is called:	o which light is ad	sorbed or scattered by the suspende
	(A)	Colour	(B)	Turbidity
	(C)	pH	(D)	
45.	Blue ba	by disease is caused ations of:	in infants due to	o drinking water, containing higher
	(A)	Nitrates	(B)	Cadmium
	(C)	Sulphides	(D)	Chlorides
46.	The comm	nonly used indicator for	measuring iron conc	entration in water is :
	(A)	Sodium thiosulphate	(B)	Silver nitrate
	(C)	Eriochrome black T	(D)	1, 10 phenanthraline
47.	The suita	ble method for distribut	ion system for a city	with haphazard growth pattern is :
	(A)	Ring system	(B)	Grid system
	(C)	Tree system	(D)	Reticulated system
48.	The settlin	ng of particles in a sedin	nentation tank deper	nds upon :
		Length of tank	(B)	Width of tank
	(C)	Depth of tank	(D)	Length and width of tank
49.	A floatatio	on unit is usually provide	ed to remove :	
	(A)	Suspended solids	(B)	Oil and grease
	(C)	Grit	(D)	Stones
50.	A common	ly used coagulant is:		
	(A)	Sodium	(B)	Chlorine
	(C)	Alum	(D)	Lime

51.	from sep	tic tank the emuer	its are discharged into .				
	(A)	Soak pit	(B)	Drainage			
	(C)	Oxidation pond	(D)	Public sewer			
52.	The maxi	mum efficiency of	BOD removal is achieved i	n:			
	(A)	Aerated lagoons	(B)	Trickling filters			
	(C)	Digestion tank	(D)	Oxidation ditch			
53.	Biochemi	cal oxygen demand	l of wastewater represent :				
	(A) Total concentration of biochemical matter						
	(B)	(B) Total organic matter					
	(C)	Concentration of	biodegradable organic ma	tter			
	(D)	Concentration of	chemically degradable org	anic matter			
54.	Bulking	of sludge can be con	ntrolled by :				
	(A)	Denitrification	(B)	Aeration			
	(C)	Coagulation	(D)	Chlorination			
55.	An under	ground passage us	ed by pedestrians, vehicula	ar traffic etc is known as:			
	(A)	Sub-way	(B).	Service road			
	(C)	Fly over	(D)	Sidewalk			
56.	An ideal l	horizontal transitio	on curve should be a :				
	(A)	Hyperbola	(B)	Circle			
	(C)	Spiral	(D)	Parabola			
57.	A road co	nnecting one town	with another town is know	vn as:			
	(A)	Main road	(B)	Highway			
	(C)	Country road	(D)	Ring road			
58.	The maxi	mum allowable suj	per elevation is:				
	(A)	1 in 12	(B)	1 in 15			
	(C)	1 in 18	(D)	1 in 30			
59.	The best	example of a rigid	pavement is:				
	(A)	Concrete road	(B)	Bitumen road			
	(C)	Gravel road	(D)	Water bound macadam road			

60.	First ope	st operation during the detailed survey of a hill road is :				
	(A)					
	(B)	Longitudinal survey and cross sec	tioning			
	(C)	Adjustment of alignment				
	(D)	Fixation of bench marks				
61.	The maxi	imum design gradient for vertical pro	ofile of a	road is:		
	(A)	Ruling gradient	(B)	Limiting gradient		
	(C)	Minimum gradient	(D)	Maximum gradient		
62.	Bearing p	plates are used to fix :				
	(A)	Double headed rails to wooden slee	pers			
	(B)	Single headed rails to wooden sleep	pers			
	(C)	Flat footed rails to wooden sleepers	3			
	(D)	Flat footed rails to cast iron sleeper	rs			
63.	Arrangem	ent made to divert trains from one t	rack to	another is called :		
	(A)	Railway point	(B)	Turnout		
	(C)	Railway crossing	(D)	Railway junction		
64.	Distance l	petween inner faces of the flanges is	kept:			
	(A)	Equal to gauge distance	(B)	Slightly less than gauge distance		
	(C)	Double amount of gauge distance	(D)	Slightly more than gauge distance		
65.	The place	where a railway line and a road cros	s each o	ther at the same Level :		
	(A)	Cross over	(B)	Railway junction		
	(C)	Level crossing	(D)	Road junction		
66.	Gauge of a	permanent way is:				
	(A)	Minimum distance between running	face of	rails		
	(B)	Width of formation				
	(C)	Distance between centres of rails				
	(D)	Distance between outer faces of :1				

67.	The kind	of survey work	in which curvature of ea	orth is	ignored is called:
	(A)	Aerial survey	y	(B)	Geological survey
	(C)	Geodetic sur	vey	(D)	Plane survey
68.	As per Inc	dian standard	specification, the length	of one	link in 30 metre chain is
	(A)	20 cm		(B)	30 cm
	(C)	40 cm		(D)	10 cm
69.	Example	for an obstacle	that obstructs both chair	ning a	and ranging:
	(A)	River		(B)	Hillock
	(C)	Lake		(D)	Building
70.	The instr	ument that is	used for measurement of	angle	8:
	(A)	Geodimeter		(B)	Tellurometer
	(C)	Sextant		(D)	Telescope
71.			of a line is 62° 20' and e bearing of that line will		magnetic declination at that place is
	(A)	64° 70'		(B)	60° 30'
	(C)	59° 30'		(D)	65° 10′
72.	In a plane	e table survey	the plotting of inaccessib	le poir	nts can be done by :
	(A)	Method of in	tersection	(B)	Method of interpolation
et.	(C)	Method of ra	diation	(D)	Method of traversing
73.	Mean sea	level MSL is	established after analysin	ng the	tidal fluctuations over a period of :
	(A)	10 years		(B)	16 years
	(C)	19 years		(D)	50 years
74.	A star is place of o star is:	observed at i	ts upper culmination wh 30° N and declination of	en it the st	is north of zenith. The latitude of the ar is 50° N. The zenith distance of the
	(A)	10°		(B)	20°
	(C)	40°		(D)	80°
75.	The met	hod of levellingure at which v	ng in which the heights vater boils is known as:	of m	nountains are found by observing the
	(A)	hypsometry		(B)	barometric levelling
	(C)	reciprocal le	velling	(D)	check levelling

	5 cm too	long throughout the measuremen	m chain wa	as found to be 634.4 m. If the chain was
	(A)	632.420 m	(B	
	. (C)	634.420 m	(D	
77.	The verti	ical distance between any two con	secutive co	ontours is known as
	(A)	Contour line	(B)	
	(C)	Horizontal equivalent	(D)	
78.	Spire test	t is used in permanent adjustmen	t of a theo	dolite for:
	(A)	Adjusting the line of sight	(B)	
	(C)	Adjusting the vertical axis	(D)	o the moraditude data
79.	The highe	est value of coefficient of refraction	n occurs di	
	(A)	Early morning	(B)	Evening
	(C)	At noon	(D)	
80.	The curve	having varying radii and introdu	ced in bety	ween a straight and a circular curve is :
	(A)	Vertical curve	(B)	Transition curve
	(C)	Compound curve	(D)	Super elevation
81.	Who said	give me blood and I will give you	freedom"?	
	(A)	Bagat Singh	(B)	Subash Chandra Bose
	(C)	Lala Lajpat Rai	(D)	Dadabhai Naoroji
82.	Who is the	Chairman of the National Farme	ers Commis	The state of the s
		Goswamy	(B)	T.S. Batra
	(C)	M.S. Swaminathan	177-176	Ashok Mehta
83.	We have constitution	borrowed the concept of "Di	rective pr	rinciples of state policy" from the
	(A)	U.S.A.	(B)	Canada
	(C)	U.K.	(D)	Ireland
84.	Who is the	President of France?		
	(A)	Laurent Fabius	(B)	Fancois Hollande
	(C) ,	Jean Yves Le Drain	Carrier Control	Anne Hidalgo
072/2	016	12		

A

85.	The Jallia	nwala Bagh ma	assacre took place on	:	
	(A)	14th August 19	18	(B)	6th March 1920
	(C)	13th April 1919)	(D)	10th September 1921
86.	The festiv	al 'Mamankam'	was celebrated once	in twelv	e years at the bank of the river :
	(A)	Periyar		(B)	Bharathapuzha
	(C)	Pampa		(D)	Chaliyar
87.	Dr. B.R. A		described which of th	e fundar	mental right as "the heart and soul" of
	(A)	Right to equal	ity	(B)	Right to Freedom
	(C)	Right to religio	on	(D)	Right to constitutional remedies
88.	The finan		ween union govt. and	l states a	re discussed in the Indian constitution
	(A)	266 - 273		(B)	265 – 270
	(C)	268 - 281		(D)	270 – 278
89.	The name	associated with	"Misrabhojanam" ir	Kerala	
	(A)	Sahodaran Ay	yappan	(B)	T.K. Madhavan
	(C)	R. Sankar		(D)	Mannath Padmanabhan
90.	"If God we	ere to tolerate u	ntouchability I would	l not reco	ognise him as God at all"–Who said it?
	(A)	Dr. Rajendrap	rasad	(B)	Lokmanya Tilak
**	(C)	Vinoba Bhave		(D)	Mahatma Gandhi
91.	Who prop	osed 'the pream	ble' before the Drafti	ng Comn	nittee of the constitution of India?
	(A)	B.R. Ambedka	r	(B)	K.M. Munshi
	(C)	Sir Krishnasw	ami Ayyangar	(D)	Jawaharlal Nehru
92.	"Privy Pu	rse" was abolish	ed by which one of th	ne follow	ing constitution Amendment Acts?
	(A)	25 th		(B)	26th
	(C)	42nd		(D)	44 th

93. The Lokayukta and Upalokyukta Act was first passed in :			in:	
	(A)	Maharastra	(B)	Kerala
	(C)	Karnataka	(D)	Odisha
94.	The conce	pt of public Interest litigation in India	relate	es to:
	(A)	Greater Federalism	(B)	Judicial Supramacy
	(C)	Accountability	(D)	Parliamentary Sovereignty
95.	Who raise	ed the slogan "Do or Die"?		
	(A)	Bhagath Singh	(B)	Mahatma Gandhi
	(C)	Badruddin Tyabjii	(D)	Sardar Pattel
96.	Who says	that "every Judge is an activitst, either	on t	he forward gear or on the reverse"?
	(A)	Justice Hidayathulla	(B)	Justice Malimath
	(C)	Justice Krishna Iyer	(D)	Justice Dipak Misra
97. When a non-member of parliament is inducted into the council of ministers he must member of parliament with in?				e council of ministers he must become
	(A)	Three months	(B)	Six months
	(C)	Five months	(D)	Seven months
98.	Who was	the first Chief Minister of Thiru-Kochi?		
	(A)	A.J. John	(B)	C. Kesavan
	(C)	T.K. Narayana Pillai	(D)	Panambilli Govinda-Menon
99.		the following committee suggested tal duties in the constitution of India?	the	inclusion of a seperate chapter or
	(A)	M.R. Srivastava Committee	(B)	Swaran Singh Committee
	(C)	M.K. Kaw Committee	(D)	Rajinder Sachar Committee
100.	"Sadhu Ja	na Paripalana Yogam" was founded by	:	
	(A)	Sree Narayana Guru	(B)	Dr. Palpu
	(C)	Chattambi Swamikal	(D)	Ayyankali