104/2014

Maximum: 100 marks

Time: 1 hour and 15 minutes

1.		The Poisson's ratio of a material is 0.4. If a force is applied to this material, there is a decrease in cross sectional area by 2%. The percentage increase in its length is:					
	(A)	0.25%	(B)	0.5%			
	(C)	2.5%	(D)	3%			
2.	The differ	ence between LST and EST is called:					
	(A)	Activity	(B)	Event			
	(C)	Float	(D)	Critical path			
3.	Identify t	he method which is not a LPP techniqu	ie:				
	(A)	Graphical method	(B)	Transportation problem			
	(C)	Simplex method	(D)	ABC analysis			
4.	Roving in	spection is a kind of:					
	(A)	Key point inspection	(B)	Floor inspection			
	(C)	Fixed inspection	(D)	Final inspection			
5.	Which of the following is an inversion of double slider crank chain?						
	(A)	Whitworth quick return mechanism	(B)	Reciprocating compressor			
	(C)	Rotary engine	(D)	Scotch yoke mechanism			
6.	The size of	of an abrasive grain is termed as:					
	(A)	Grit	(B)	Grade			
	(C)	Structure	(D)	Orbit .			
7.	The amount of money paid to a worker in cash for the effort put by him is called:						
	(A)	Real wage	(B)	Nominal wage			
	(C)	Living wage	(D)	Fair wage			
8.	In pig iro	n percentage of carbon varies from :					
	(A)	0.1 to 0.5	(B)	0.5 to 1			
	(C)	1 to 5	(D)	5 to 10			
	3.7						

9.	The production of flat vertical surfaces on both sides of a workpiece is called:				
	(A)	Gang milling	(B)	Straddle milling	
	(C)	Form milling	(D)	End milling	
10.	Which of	the following is not a work holding	g device in	a lathe?	
	(A)	Mandrel	(B)	Follower rest	
	(C)	Face plate	(D)	Tool post	
11.	A sensitiv	e angle measuring device is:			
	(A)	Clinometer	(B)	Comparator	
	(C)	Micrometer	(D)	Interferometer	
12.	Convert t	he pressure head of 3m of oil havi	ng sp.gravi	ty 0.8 into equivalent water head:	
	(A)	2.4 m of water	(B)	3.75 m of water	
	(C)	0.24 m of water	(D)	0.375 m of water	
13.	Double he	elical gears are also called :			
	(A)	Hypoid gears	(B)	Bevel gears	
	(C)	Herring bone gears	(D)	Spiral gears	
14.	Working	of orifice meter is based on :			
	(A)	Pascal's law	(B)	Bernoulli's theorem	
	(C)	Stoke's law	(D)	Archimedes principle	
15.	A black b	ody at 227°C radiates heat at the	rate of 6 ca	al/cm ² s. At a temperature of 727°C th	
	rate of he	at radiated in the same unit will l	be:		
	(A)	48	(B)	60	
	(C)	96	(D)	-112	
16.	Babbit m	etal is an alloy of :			
	(A)	Copper, tin and zinc	(B).	Copper, tin and manganese	
	(C)	Copper, tin and antimony	(D)	Nickel, chromium and molybdenum	

17.	Least cour	nt of a micrometer is:			
	(A)	0.1 mm	(B)	0.01 mm	
	(C)	0.001 mm	(D)	0.0001 mm	
18.	Which of	the following is not a non-	lestructive test?		
	(A)	Radiographic test	(B)	Liquid penetrant test	
	(C)	Ultrasonic test	(D)	Creep test	
19.	What is tl	ne intensity of pressure at a	a depth of 6m belo	w the free surface of water	r?
	(A)	58860 N/m ²	(B)	$6000 \ N/m^2$	
	(C)	$58.86 \ N/m^2$	(D)	$6 N/m^2$	
20.	In case of	long column when both en	d fixed, the ratio l	etween effective length (L) and actual
	length (l)	is:			
	(A)	L = l	(B)	L = 2l	
	(C)	L = l/2	(D)	$L = l/\sqrt{2}$,
21.	In a PEI	RT problem, optimistic tin	ne, most likely ti	me & pessimistic time	are 1, 2 & 3
		ely, then the expected time			
	(A)	1	(B)	2	
	(C)	3	(D)	4	
22.	For a circ	ular pipe of diameter d ,the	e hydraulic mean	lepth m is equal to:	
,	(A)	4d .	(B)	2d	
	(C)	d/4	(D)	d/2	
23.	Water is	flowing with a velocity 4m/	$ m s^2$ in a pipe line of	diameter 8 cm. The diam	eter suddenly
	reduced t	to 2 cm, what is its correspo	onding velocity?		
	(A)	$8m/s^2$	(B)	$16 m/s^2$	
	(C)	$32 m/s^2$	(D)	$64 m l s^2$	
			POR STATE OF THE S		

24.	In gears, the ratio of pitch circle diameter in millimeters to the number of teeth is called:					
	(A)	Pitch circle		(B)	Circular pitch	
	(C)	Diametral pitch		(D)	Module	
25.	The unit	of surface tension in SI unit is :				
	(A)	Nm		(B)	N/m	
	(C)	N/m²		(D)	N ² /m	
26.	Pearlite i	s a combination of :				
	(A)	Cementite and martensite		(B)	Ferrite and iron graphite	
	(C)	Ferrite and austenite		(D)	Ferrite and cementite	
27.	The verti	cal passage through which molte	n met	al pou	red into the mould is termed as:	
	(A)	Sprue		(B)	Swab	
	(C)	Draw spike		(D)	Gaggers	
28.	COP of a	a reversed carnot cycle is 5. T	hen r	atio l	between higher temperature to lower	
	temperat	ure will be :				
	(A)	1.2		· (B)	1.5	
	(C)	2		(D)	2.2	
29.	In adiaba	tic process :				
	(A)	Enthalpy remains constant		(B)	Entropy remains constant	
	(C)	No work transfer takes place		(D)	No heat transfer takes place	
30.	The ratio	between direct stress and volume	etric s	train i	s:	
	(A)	Bulk modulus		(B)	Poisson's ratio	
	(C)	Factor of safety		(D)	Modulus of rigidity	
31.	A cantilev	er beam having uniformly distrib	outed l	oad or	n the entire length, then the maximum	
	bending m	noment will be at the:				
	(A)	Free end		(B)	Middle	
	(C)	Fixed end		(D)	None of these	
104/	2014		6		A	

32.	In an IC engine thermostat is an essential component in the:				
	(A)	Cooling system	(B)	Lubricating system	
	(C)	Fuel system	(D)	Ignition system .	
33.	One stoke	is equal to :			
	(A)	$10^{-4} m^2 / s$	(B)	$10^{-3} m^2/s$	
	(C)	$10^{-2} m^2/s$	(D)	$10^{-1} \ m^2 \ / s$	
34.	In which	process heat rejection takes place in	a carnot	cyclé?	
	(A)	Isothermal expansion	(B)	Isothermal compression	
	(C)	Isentropic expansion	(D)	Isentropic compression	
35.	The differ	ence between dry bulb temperature	and dew	point temperature is:	
	(A)	Dew point depression	(B)	Dry bulb depression	
	(C)	Wet bulb depression	(D)	Degree of saturation	
36.	An undes	irable property of a refrigerant is :			
	(A)	High critical temperature	(B)	High latent heat of vapourisation	
	(C)	High boiling point	(D)	Low specific heat of liquid	
37.	The maxi	mum frictional force, when a body j	ust begin		
	(A)	Static friction	(B)	Dynamic friction	
	(C)	Kinematic friction	(D)	Limiting friction	
38.	One litre	of liquid weighs 8 N. Find its specif	ic weight		
	(A)	$8N/m^3$	(B)	$80 N/m^3$	
	(C)	$800N/m^3$	(D)	8000 N / m ³	
39.	When on	e of the links of a kinematic chain is	fixed, th	nen the chain is called :	
	(A)	Inversion	(B)	Mechanism	
	(C)	Machine	(D)	Structure	
40.	Kaplan turbine is:				
	(A)	An axial flow reaction turbine	(B)		
	(C)	A mixed flow reaction turbine	(D)	A tangential flow impulse turbine	
				104/20	

41. Which of the following matrix does not have multiplicative inverse?

(A)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$

(D)
$$\begin{bmatrix} -1 & 0 \\ 3 & 1 \end{bmatrix}$$

42. The value of sin (120°) is:

(B)
$$\frac{\sqrt{3}}{2}$$

(D)
$$\frac{1}{2}$$

43. The slope of the straight line 2x - 3y + 1 = 0 is:

(A)
$$\frac{2}{3}$$

(B)
$$\frac{-2}{3}$$

(C)
$$\frac{3}{2}$$

(D)
$$\frac{-3}{2}$$

44. Which of the following straight line is parallel to the line 3x + 4y + 1 = 0?

(A)
$$3x + 4y - 1 = 0$$

(B)
$$7x + y = 0$$

(C)
$$4x + 3y + 1 = 0$$

(D)
$$4x - 3y + 1 = 0$$

45. The line 3x+4y-12=0 cuts the X axis at:

46. The derivative of $\log(\sec x + \tan x)$ is:

(A)
$$\sec x - \tan x$$

(C)
$$\sec x + \tan x$$

(D)
$$\sec x$$

47. Slope of the curve $y = \sin(2x)$ at $\left(\frac{\pi}{4}, 1\right)$ is:

- 48. If $\begin{vmatrix} 2 & 3 & 1 \\ x & 4 & 7 \\ 0 & 1 & 2 \end{vmatrix} = 0$, then the value of x is:
 - (A) $\frac{5}{2}$

(B) 3

(C) 5

- (D) $\frac{2}{5}$
- The coefficient of x^3 in the expansion of $\left(x+\frac{2}{x}\right)^r$ is:
 - (A) 49

(B) 84

(C) 40

(D) 26

- **50.** If $\frac{dy}{dx} = 2x$, then y is:
 - (A) $x^2 + c$

(B) x + c

(C) $x^3 + c$

(D) 2x + c

- 51. $Lt \left(\frac{x^2 + 7x 18}{x 2} \right)$ is:
 - (A) 11

(B) 0

(C) 7

- (D) 2
- The area of the region bounded by the line x y = 0, x axis, x = 0 and x = 2 is:
 - (A) 4 sq. units

(B) 2 sq. units

(C) . 12 sq. units

- (D) 6 sq. units
- The function $y = x^2 + 6x + 1$ is decreasing at:
 - (A) (1, 8)

(B) (-1, -4)

(C) (0, 1)

(D) (-4, -7)

- 54. $\int_{0}^{\frac{\pi}{2}} \sin\left(\frac{\theta}{2}\right) d\theta \text{ is :}$

(B) 2

(A) $\sqrt{2}$ (C) $2 - \sqrt{2}$

(D) 2+√2

55.
$$Lt \frac{x^2 + 3x}{x + 3x^2}$$
 is:

(A) 3

(B) 1

(C) 0

(D) $\frac{1}{3}$

56. The number of terms in the expansion of $(x+2)^{33}$ — $(x-2)^{33}$ after simplification is:

(A) 32

(B) 0

(C) 17

(D) 33

57. If $Cos(x) = Sin(x + 40^\circ)$, then the value of x is:

(A) 10°

(B) 5°

(C) 25°

(D) 1°

58. If $x = t^2 - 1$ and $y = 2e^t$, then $\frac{dy}{dx} = :$

(A) $\frac{2e^t}{t}$

(B) e^t

(C) $\frac{e^t}{t^2}$

(D) $\frac{e^t}{t}$

59. The normal to the curve $y = x^3$ at (1, 1) is:

(A) x + y = 0

(B) x + 3y - 4 = 0

(C) y - x = 0

(D) x = 0

60. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then $A^2 = :$

(A) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(B) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

(C) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

(D) $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$

61.	What doe	s the prefix 'femto' stands for?				
	(A)	10-6	(B)	10-9		
	(C)	10 ⁻¹²	(D)	10^{-15}		
62.	What is the	he mass of 30 m ³ of water?				
	(A)	30,000 kg	(B)	300 kg		
	(C)	3,000 kg	(D)	30 kg		
63.	When a re	oad is banked at a curve the ang	le of banking	is determined the relation	?	
	(4)	ton Q _ v2	(B)	$\sin \theta = \frac{v^2}{rg}$ $\theta = \frac{v^2}{rg}$		
	(21)	$\tan \theta = \frac{1}{rg}$	(B)	$\frac{\sin \theta - rg}{rg}$		
		v^2	and the same	v^2		
	(C)	$\tan \theta = \frac{v^2}{rg}$ $\cos \theta = \frac{v^2}{rg}$	(D)	$\theta = \frac{1}{rg}$		
64.	What sho	ould be the power of a motor c	apable of pu	imping 1000 kg of water	to a height	
	10 m from	n ground in 10 seconds?				
	(A)	98 watts		9800 watts		
	(C)	.980 watts	(D)	9.8 watts		
65.	What is the resultant of two forces of which one force is 20 Newtons acting towards east and the other forces is 50 Newtons acting towards west?					
		25 Newton towards west		25 Newton towards east		
	(C)			70 Newton towards east	***	
66.	How is the viscosity of a fluid varies when the temperature is raised?					
	(A)	Increases	(B)	Decreases		
	(C)	Does not change	(D)	Fluctuates		
67.	What is t	he pressure equivalent to a wate	r column of	neight 1 meter?		
		$9800 \ N/m^2$	(B)	$800 \ N/m^2$		
	(C)	$1000 \ N/m^2$	(D)	$1800 \ N/m^2$		
68.	Which ty	pe of waves are used in 'SONAR'	?	**************************************		
	(A)	X- rays	(B)	Light waves		
	(C)	Alpha rays	(D)	Ultrasonic waves		
69.	A sprayer	make use of:				
	(A)	Bernoulli's principle	(B)	Newtons Law		
	(C)	Pascal's Law	(D)	Friction		
70.		er to roll a heavy cylinder over a		use:		
	(A)	Kinetic friction is less than rol				
	(B)	Rolling friction is much less th	an kinetic fr	iction		
	(C)	Absence of static friction				
	(D)	Absence of kinetic friction				

71.	Galvanisa	ation of iron denotes Coating w	ith:	
	(A)	Al	(B)	Pb
	(C)	Sn	(D)	Zn
mo	ma.	alon of Bobt our called.		
72.		cles of light are called :	(B)	Protons
	(A)	Photons Electrons	(D)	Neutrons
	(0)	Electrons	(10)	Neutrons
73.	The oxida	tion state of Manganese in K_2 .	MnO4 is:	
	(A)	+7	(B)	+6
	(C)	+2	(D)	-2
74.	The mono	omer of natural rubber is:		
	(A)	Styrene	(B)	3- methyl-1, 3-butadiene
	(C)	. 2-methyl-1, 3-butadiene	(D)	Teflon
75.	The Comp	pound used as antiknock is :		
	(A)	Ethanol	(B)	Propanol
	(C)	Glyoxal	(D)	Tetraethyllead
76.	Ozone is p	present in :		
	(A)	Thermosphere	(B)	Stratosphere
	(C)	Troposphere	(D)	Mesosphere
77.	Calculate	the molarity of a solution cont	aining 5.3g of	Na_2CO_3 in 100mL of water :
	(A)	0.5 M	(B)	0.2 M
	(C)	0.1 M	(D)	0.05 M
78.	Temporar	ry hardness in water is caused	by:	
	(A)	Calcium carbonate	(B)	Calcium sulphate
	(C)	Magnesium carbonate	(D)	Magnesium bicarbonate
79.	Calculate	the number of moles in 22g of	CO ₂ :	
	(A)	0.5 mol	(B)	0.7 mol
	(C)	0.8 mol	(D)	0.75 mol
80.	Which of	the following is an unique prop	erty of carbon	?
	(A)	Ionization	(B)	Dissolution
	(C)	Catenation	(D)	Sublimation
104	/2014		12	

81.	Who wrot	e the book Darsanamala?		
	· (A)	Chattampi Swamikal	(B)	Sree Narayan Guru .
	(C)	Vallathol Narayana Menon	(D)	Kumaranasan
82.	Indian Na	ational Congress was founded in th	e year :	
	(A)	1884	(B)	1885
	(C)	1886	(D)	1887
83.	'Magic Jol	hnson' is associated with:		
	(A)	Boxing	(B)	Cricket
	(C)	Hockey	(D)	Basket ball
84.	Name the	patriot who started the newspape	r "Swades	habhimani" in 1905:
	(A)	Ramakrishnapillai	(B)	Vakkom Abdul Khader Moulavi
	(C)	Dr. Palpu	(D)	K. P. Kesava Menon
85.	Gandhiji	started his Sathyagraha movemen	t in India	at:
	(A)	Kheda	(B)	Berdoli
	(C)	Lahore	(D)	Chambaran
86.	Name the	East flowing river in Kerala :		
	(A)	Periyar	(B)	Pambar
	(C)	Pamba	(D)	Chandragiripuzha
87.	The Tash	kent Agreement was signed betwee	en:	
	(A)	India and Pakistan	(B)	India and Srilanka
	(C)	India and Russia	(D)	India, Russia and Pakistan
88.	Galileo G	alilie was an ——— scientist.		
	(A)	German	(B)	Spanish
	(C)	Italian	(D)	Australian
89.	Bhakrana	angal Dam has been built on the ri	ver:	
	(A)	Ganga .	(B)	Narmada
	(C)	Satlaj	(D)	Mahanadi
90.	Who foun	ded Sadbujana Paripalana Yogorn	n?	
	(A)	Mannathu Padmanabhan	(B)	Vaghbhatananda
	(C)	Ayyankali	(D)	Kumara Guru

91.	Whose birthday is being celebrated as "Sadbhavana day"?					
	(A)	Mahatma Gandhi	(B)	Rajiv Gandhi		
	(C)	Indira Gandhi	(D)	Jawaharlal Nehru		
92.	The curre	ency of Bangladesh is :				
	(A)	Rupee	(B)	Taka		
	(C)	Yen	(D)	Dollar		
93.	"The Peri	manent Settlement Act" was in	troduced by:			
	(A)	Lord Dalhousie	(B)	Lord Cornwallis		
	(C)	Lord Rippon	(D)	Lord Lytton		
94.	Basava P	unnaia the famous communist	leader who led	I the movement in :		
	· (A)	Tebhaga	(B)	Telugana		
	(C)	Calcutta	(D)	Tripura		
95.	Back to v	redas' was a slogan by :				
	(A)	Rajaram Mohan Roy	(B)	Ramakrishna Paramahamsar		
	(C)	Dayananda Saraswathy	(D)	Swami Vivekananda		
96.	The head	quarters of International Mone	tary Fund is in	n:		
	(A)	Washington	(B)	Geneva		
	(C)	New York	(D)	Paris		
97.	Ustad Bis	smillakhan is associated with:				
-	(A)	Flute	(B)	Violin		
	(C)	Shehnai	(D)	Veena		
98.	The mour	ntain ranges which divided the	North and Sou	th India :		
	(A)	Himalayas	(B)	Vindhyas		
	. (C)	Western Ghats	(D)	Eastern Ghats		
99.	Rigveda c	ontains :				
	(A)	1028 hymns	(B)	1050 hymns		
	(C)	1038 hymns	(D)	1018 hymns		
100.	Present cl	hief justice of Kerala :				
	(A)	Justice P. Sadasivam	(B)	Justice K.T. Thomas		
	(C)	Justice Manjula Chelloor	(D)	Justice Althamas Kabeer		
			()			