99/2015

Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	Which one	e of the following is used as a pass	ive-compor	nent in electric circuits?
	(A)	Resistor	(B)	Transistor
	(C)	Tunnel diode	(D)	Vaccum triode
2.	The lengt	h of a conductor is doubled, then it	s resistan	ce will be :
	(A)	Became same	(B)	Became halfed
	(C)	Became doubled	(D)	Four times increased
3.	The defec	ts of a primary cell is :		
	(A)	Sulfation and buckling	(B)	Local action and polarization
	(C)	Sulphation and local action	(D)	Buckling and polarization
4.	The insul	ator used to separate commutator	segment is	3:
	(A)	Asbestos	(B)	PVC
	(C)	Mica	(D)	Wood
5.	Energy st	cored in a capacitor is :		
	(A)	$E = \frac{1}{2}CV^2$	(B)	$E = \frac{1}{2}EA^{2}$ $E = \frac{\theta}{V}$
	(C)	$E = \frac{1}{2} \times \frac{D^2}{E}$	(D)	$E = \frac{\theta}{V}$
6.	The shaft	torque can be calculated by the fo	rmula:	
	(A)	$0.159 \phi ZIa$	(B)	735.5×BHP

- - (C) $0.159 \frac{Eb \times Ia}{N}$

- $2\pi N$
- (D) none of the above
- What is the purpose of retardation test? 7.
 - Determining copper loss of series motor
 - Determining copper loss of shunt motor (B)
 - Determining stray loss of series motor (C)
 - Determining stray loss of shunt motor (D)

	(A)	$100\cos(313t+180^{\circ})$	(B)	$100\cos(313t)$
	(C)	$100\cos\!\left(\!313t+90^\circ\right)$	(D)	$200\cos(493t)$
9.	The opera	ating temperature of carbon filam	ent lamps a	are:
	(A)	3655°K	(B)	3172°K
	(C)	2972°K	(D)	2073°K
10.	The motor	r used in a ceiling fan is :		
	(A)	Split phase motor	(B)	Capacitor start motor
	(C)	Shaded pole motor	(D)	AC series motor
11.	The Theve	enin-Norton equivalent of a netwo	ork can be f	ound:
	(A)	if it contains voltage sources only	у	
	(B)	if it contains current sources on	ly	
	(C)	if it contains voltage/current sou	irces but no	ot dependent sources
	(D)	even if it contains voltage/curre	nt sources a	and or dependent sources
12.	Which typ	oe of file is available in half round	shape?	
	(A)	Bastard file	(B)	Rasp cut file
	(C)	Double cut file	(D)	Curved cut file
13.	The direct	tion of rotation of a motor is deter	mined by:	
	(A)	Fleming Right Hand Rule	(B)	Amperes Right Hand Rule
	(C)	Flemings Left Hand Rule	(D)	Cork Scrue Rule
14.	The fusing	g factor of HRC fuse will be :		
	(A)	1.1	(B)	1.4
	(C)	1.6	(D)	1.11

(A) $\frac{1}{4}$ joule

(C) 1 joule

(B) $\frac{1}{2}$ joule (D) 2 joule

16.	Avalanch	e break down in a semi conductor d	iode occur	res – when?			
10	(A)	forward bias exceeds a certain val	ue				
	(B)	the potential value is reduced to zero					
	(C)	forward current exceeds a certain	value				
	(D)	a reverse bias exceeds a certain va	alue				
17.	At which	length do you have to change the bi	rushes of a	a DC machine?			
	(A)	$\frac{1}{2}$ of original length	(B)	$\frac{2}{3}$ of original length			
	(C)	$\frac{1}{3}$ of original length	(D)	$\frac{3}{4}$ of original length			
18.	The prima	ary and secondary connection of a d	istributio	n transformer is :			
	(A)	primary and secondary star	(B)	primary and secondary delta			
	(C)	primary delta, secondary star	(D)	primary star secondary delta			
19.	Electric fi	eld intensity is :					
	(A)	scalar quantity	(B)	phasor quantity			
	(C)	vector quantity	(D)	none of the above			
20.		l of a 50 Hrtz Three Phase Inducti f poles of the motor is :	on Motor	at full load condition is 720 RPM, the			
	(A)		(B)	8			
	(C)		(D)	4			
21.	Water he	ater has minimum insulation resist	ance of :				
	(A)	1 mega ohm	(B)	2 mega ohm			
	(C)	0.5 mega ohm	(D)	0.25 mega ohm			
22.	The funct	ion of controll grid in a pentode tub	e is :				
	(A)	to accilarate the electrons emitted	l from cat	hode			
	(B)	to controll the secondary emission	from the	plate			
	(C)	to collect electrons from the space	charge				
	(D)	to controll the number of electron	s moving	from cathode to plate			
23.	A 40 w la	mp is connected across a 240 volt s	upply wha	at is the resistance of the supply?			
	(A)	14400 Ω	(B)	1440 Ω			
	(C)	144 Ω	(D)	14.4 Ω			

24.	The rotor	of a three phase induction motor	is made up	of laminated cores because:
	(A)	to reduce eddy current loss	(B)	to reduce hysterisis loss
	(C)	to reduce copper loss	(D)	all the above
25.	A DC Am	pere hour meter can be worked or	the effect	of:
	(A)	Magnetic effect	(B)	Electro dynamic effect
	(C)	Electro magnetic effect	(D)	Chemical effect
26.	The colou	r of lime light emitted by zinc-sili	cate is:	
	(A)	Blue	(B)	Pink
	(C)	Green	(D)	Yellow
27.		nating current has a maximum ver 1/360 second?	value of 12	0 Ampere. What is the instantaneous
	(A)	1039 A	(B)	103.9 A
	(C)	10.39 A	(D)	1.039 A
28.	The curve	representing ohms law is:		
	(A)	Parabola	(B)	Hyperpola
	(C)	Sine function	(D)	Linear
29.	The maxi	mum permissible load in a lightin	g-sub circu	it is:
	(A)	800 watts	(B)	850 watts
	(C)	750 watts	(D)	900 watts
30.	The foam	factor of a sine wave is :		
	(A)	$\frac{\pi}{\sqrt{2}}$	(B)	$\frac{\pi}{2}$
				2√2
	(C)	$\frac{\sqrt{2}}{2}$	(D)	$2\sqrt{2}$
		π		π
31.		a capacitor are given as 25 micro from this information we can def		also a plus sign written near one of its that the capacitor is :
	(A)	Electrolytic capacitor	(B)	Mica capacitor
	(C)	Ceramic capacitor	(D)	Paper capacitor
32.	A rotating	g part of any alternator will be ha	ving:	
	(A)	split rings	(B)	commutator
	(C)	slip rings	(D)	brushes
99/2	2015		6	A

33.	33. The distance between clips in vertical runs shall not exceed:			
	(A)	10 cm	(B)	15 cm
	(C)	20 cm	(D)	25 cm
34.	The colour	banks on a fixed carbon resistor are	brown, re	d, and black respectively its value is :
	(A)	12 Ω	(B)	120 Ω
	(C)	21 Ω	(D)	210 Ω
35.	What is tl	he dielectric constant value of rubbe	er?	
	(A)	2.5	(B)	4
	(C)	1.5	(D)	6.7
36.	The numb	per of parallel paths in a wave wour	nd generat	tor is:
	(A)	equal to number of poles	(B)	four
	(C)	six	(D)	two
37.	The pract	ical unit of heat is expressed as:		
	(A)	Calories	(B)	Centigrade
	(C)	Joule	(D)	Newton
38.	Those alt	ernating wave form which deviate f	rom the i	deal sine wave is known as :
	(A)	Saw-Toothed wave form	(B)	Triangular wave form
	(C)	Square wave form	(D)	Distorted wave form
39.	The effect	tive turn ratio of the induction mac	hine stato	r and rotor is:
	(A)	the ordinary ratio of turns		#8 (1) The state of the state o
	(B)	the ratio of turns-modified by the	winding	factor of the stator and rotor
	(C)	a variable related to the rotor spe	ed	
	(D)	the ratio of turns modified by the	rotor resi	stance
40.	A wire m	easuring 1 mm is diameter has a cr	oss sectio	nal area of:
	. (A)	1 mm ²	(B)	1 cm ²
	(C)	0.87 mm ²	(D)	$0.78 \; \mathrm{mm^2}$
41.	The type	of insulator used in stay wire is:		
	(A)	pin type	(B)	suspension type
	(C)	shackle type	(D)	egg type

42.	A sheath	ed 3 core cable is to be used as a ower cord is used in electric iron :	power cord	for connecting heating appliances. The
	(A)	PVC sheathed	(B)	Lead sheathed
	(C)	Silk-cotton-bridle	(D)	Rubber sheathed
43.	The no lo	ad current of an induction motor	is ———	——— approximately.
	(A)	40% of full load current	(B)	10% of full load current
	(C)	20% of full load current	(D)	100% of full load current
44.	The disad	vantage of spring control over gra	avity contro	ol:
	.(A)	it does not give a uniform speed		
	(B)	it can only be used in parallel p	osition	
	(C)	it deteriorates with time		
	(D)	all of the above		
45.	The opera	tion of a JFET involves :		
	(A)	a flow of minority carriers	(B)	recombination
	(C)	flow of majority carriers	(D)	negative resistance
46.	The simpl	est way of varying the flux produ	ced by an e	lectro magnet is :
	(A)	increasing and decreasing the n	umber of tu	arns of the coil
	(B)	using an exciting coil with numl	per of tapin	gs
	(C)	varying core position for the exc	iting coil	
	(D)	varying the current through the	exciting co	il t
47.	The instru	ment used for measuring medium	n range of	resistance is:
	(A)	series type ohm meter	(B)	wheat stone bridge
	(C)	shunt type ohm meter	(D)	megger
48.	If a three	phase motor operates in single ph	asing it wi	ll altimately make the motor:
	(A)	to burn out	(B)	to carry no load
	(C)	to run with tripple speed	(D)	not to run efficiently
49.	The brief	period during which coil remains	short circui	ited is known as :
	(A)	neutralising period	(B)	cross magnatising period
	(C)	cummulation period	(D)	progressive period
50.	The recipr	ocal of impedence is known as :		
	(A)	admittance	(B)	conductance
	(C)	susceptance	(D)	resistance

8

99/2015

51.	For gener	ating a 1 kilo Hertz note, t	he most suitab	le c	ircuit is:
	(A)	Hartly oscillator	((B)	Colpits oscillator
	(C)	Tuned-collector oscillator	((D)	Wein bridge oscillator
52.	When the		possision-thro	ough	a star delta stater the stator curren
	(A)	$\sqrt{3}$ times the current tak	en in delta pos	sitio	on
	(B)	the times the current tak	en in delta pos	itio	n
	(C)	$1/\sqrt{3}$ times the current to	aken in delta p	osit	tion
	(D)	$\frac{1}{3}$ times the current take	n in delta posi	tion	
53.	Armourin	g is provided in the cables	to safe guard a	ıgai:	nst:
	(A)	moisture entry	(B)	mechanical injury
	(C)	white out attack	. (D)	bursting on failure
54.	The trans	ducer used in a strain guaș	ge is :		
	(A)	an active transducer			
	(B)	a device that converts ele-	ctrical voltage	in t	o mechanical displacement
	(C)	a device that converts me	chanical displa	acen	nent in to electrical current
	(D)	a device that converts me	chanical displa	acen	nent into a changing resistance
55.	The mate	rial used for making the sta	arting resistan	ce o	of a starter is :
	(A)	Eureka	(B)	Tungstone
	(C)	Nichrome	(D)	Kanthal
56.	Hystevisis	loss of a single phase tran	sformer is cal	cula	te by the formula is:
	(A)	$RB^{1.2} \max . f$	(B)	$QB^2 \max f$
	(C)	$PB^{1.6} \max f$	(D)	$\frac{w}{V1^2}$
57.	The direct	ion of rotation of an ordina	ry shaded pole	e mo	otor:
	(A)	can be reversed by revers	ing the supply	ter	minal-actions of the stator winding
	(B)	can not be reversed			
	(C)	can be reversed by open c	ircuiting the sl	hadi	ing-rings
	(D)	oon he warraward by short o	irquiting the c	had	ing rings

58.	The value	of absolute permittivity of a	air is ;		
	(A)	$9 \times 10^9 \text{ F/M}$	(B)	$5.54 \times 10^6 \mathrm{F/M}$	
	(C)	9 × 10-9 F/M	(D)	$8.854 \times 10^{-12} \text{ F/M}$	
59.		ied voltage of a transformer ore flex density will :	is increased by	50% while its frequency is red	uced to
	(A)	became three times	(B)	became 3/4	
	(C)	became 1/3	(D)	remain the same	
60.	How man	y parallel paths in a triplex	winding for the	low of armature current?	
	(A)	2	(B)	4	
	(C)	6	(D)	8	
61.	The Q poi	nt in a voltage amplifier is s	elected in the m	iddle of the active region because	:
	(A)	it gives distortionless outp	ut		
	(B)	the operating coil then become	omes very stable		
	(C)	the circuit then requires le	ss number of res	istors	
	(D)	it then requires a small DO	voltage		
62.	The EMF	per cell of an Edison cell is :			
	(A)	1.3	(B)	1.2	
	(C)	1.5	(D)	1.4	
63.	A transfor	rmer has the maximum effic	iency when copp	er loss/iron loss is :	
	(A)	2	(B)	1.5	
	(C)	1	(D)	0.5	
64.	A synchro	nous motor draws 0.8 leadin	g power factor c	urrent the armature reaction is	
	(A)	Magnatising			
	(B)	De magnatising			
	(C)	Magnatising and cross mag	natising		
	(D)	De magnatising and cross i	nagnatising		
65.	What is th	ne negative phase sequence o	of three phase co	nnection?	
	(A)	RYB	(B)	RBY .	
	(C)	YRB	(D)	BYR	
66.	If the full	load iron loss of a transform	er is 500 w. Wha	t will be its iron loss at half load	?
	(A)	125 w	(B)	250 w	
	(C)	500 w	(D)	100 w	
99/2	015		10		A

to

67.	A low pow	er factor of the circuit means:		
	(A)	it draws more active power		
	(B)	it draws more reactive power		
	(C)	it draws less line current	10	
	(D)	it causes less voltage drop in the	line	
68.	A single V	Valt meter method is used to meas	sure power	in:
	(A)	Balanced star connection	(B)	Balanced delta connection
	(C)	Un balanced star connection	(D)	Un balanced delta connection
69.	A capacity	to rating ratio of Scott connection	n is:	
	(A)	66.6%	(B)	76.6%
	(C)	86.6%	(D)	96.6%
70.	Air gap be	tween the two electrodes of a spar	rk plug is :	
	(A)	0.5 to 0.7 mm	(B)	0.7 to 0.9 mm
	(C)	0.9 to 0.11 mm	(D)	0.11 to 0.13 mm
71.	Which ma	terial is used as the anode of a me	ercury arc	rectifier?
	(A)	Iron	(B)	Copper
	(C)	Silver	(D)	Aluminium
72.	Which typ	e of pole is used for transmitting	up to 132 F	₩:
	(A)	Mild steel pole	(B)	Wooden pole
31	(C)	Concrete pole	(D)	Steel Latticide pole
73.	Continuo	us chattering sound from the arms	ature of an	AC no volt coil indicates :
	(A)	Short circuit in the coil		
	(B)	Open circuit in the coil		
	(C)	Open circuit in the shaded ring		
	(D)	Short circuit in the shaded ring		
74.	Mixed bru	ish grades cause :		*
	(A)	Vibration		
	(B)	Unequal load distribution among	g brushes	
	(C)	A groove to be cut in the slip ring	gs	
	(D)	No problems		

75.	Which of	the following reduces high voltage ar	nd curr	ents to a safe value for measuremen
	(A)	Auto transformer		
	(B)	Mega ohm meter		
	(C)	Instrument transformer, variable to	ransfor	mer
	(D)	None		
76.	Synchron	ous motor speed is controlled by vary	ing:	
	(A)	The field current	(B)	Supply voltage
	(C)	Supply frequency	(D)	Both (B) and (C)
77.	At low va	lues of slip the torque in an induction	motor	is:
	(A)	Directly proportional to square of sl	ip	
	(B)	Directly proportional to slip		
	(C)	Inversely proportional to square of s	slip	
	(D)	Inversely proportional to slip		
78.	In a trans	oformer zero voltage regulation is achi	eved at	t a load PF which is :
	(A)	Leading	(B)	Lagging
	(C)	Unity	(D)	Zero
79.	During th	ne blocked rotor test on an induction	motor	r, the power from the mains is dra
	(A)	Copper, Core and mechanical loss	(B)	Copper and core loss
	(C)	Copper loss	(D)	Core loss
80.	The dielec	tric that would make a capacitor to h	ave the	heighest capacitance is :
	(A)	Air	(B)	Barium Titanate
	(C)	Mica	(D)	Electrolyte
81.	The India	n Act which provided separate elector	ate sys	tem for the Muslims:
	(A)	Minto-Morley Reforms	(B)	Montague Chelmsford Reform
	(C)	Indian Act of 1935	(D)	Wavell plan
82.	The state	where Jallian Walla Bagh a large ope	en spac	e is situated :
	(A)	Rajasthan	(B)	Punjab
	(C)	Hariyana	(D)	Gujarat
83.	Indian Ho	me Rule League was founded in the y	ear of:	
	(A)	1905	(B)	1907
	(C)	1909	(D)	1916 ·
99/2	015	12		

84.	Abhinava Bharat Society in Maharashtra was founded by:				
	(A)	J.M. Chatterji	(B)	Barindra Kumar Ghosh	
	(C)	V.D. Savarkar	(D)	Palin Das	
85.	The leader	who lead the revolt of 1857 at Ba	areilly:	**	
	(A)	Laxmi Bai	(B)	Nana Saheb	
	(C)	Kunwarsing	(D)	Khan Bahadur	
86.	An Indian	river which flows through the rife	t Valley :		
	(A)	Mahanadi .	(B)	Thunga Bhadra	
	(C)	Narmada	(D)	Netravathy	
87.	The higher	st mountain peak in the Eastern (Ghats:		
	(A)	Dodobetta	(B)	Anamudi	
	(C)	Agasthyakudam	(D)	Kudre Mukh	
88.	The	coast of India is called Car	natic coast	:	
	(A)	Southern part of west coast	(B)	Northern part of east coast	
	(C)	Southern part of east coast	(D)	Northern part of west coast	
89.	The chair	nan of the 14th Finance commission	on:		
	(A)	K.C. Niyogi	(B)	Y.V. Reddi	
	(C)	Vijay Kelkar	(D)	R.N. Malhotra	
90.	In context	with banking in India March 16,	1949 is a	late which marks:	
	(A)	Establishment of Reserve Bank	of India		
	(B)	Nationalisation of Reserve Bank	of India		
	(C)	Banking regulation Act coming i	n Force		
	(D)	Nationalization of banks			
91.	The last co	onsecration made by Sree Naraya	na Guru wa	as at :	
	(A)	Varkala	(B)	Aruvippuram	
	(C)	Karamukku	(D)	Kalavankodam	
92.	The count	ry where the ICC 20-20 world cup	cricket wi	ill be conducting:	
	(A)	India	(B)	Sree Lanka	
	(C)	Brazil	(D)	New Zealand	

93.	The small	est national park in Kerala :		
	(A)	Sillent Valley	(B)	Iravikulam
	(C)	Pampadum Cholai	(D)	Madhikettan Cholai
94.	The state	'Vanitha Commission' in Kerala was ca	ame ir	nto being on :
	(A)	14 th March 1995	(B)	14 th April 1996
	(C)	20th August 1993	(D)	14th December 1991
95.	'Alma Vid	hya Sangam' was founded by :		
	(A)	Vaikunda Swamikal	(B)	Chattampi Swamikal
	(C)	Sree Narayana Guru	(D)	Vagbhadanandan
96.	The found	er of Indian Coffee House :		
	(A)	E.K. Nayanar	(B)	E.M.S. Namboori Pad
	(C)	A.K. Gopalan	(D)	Krishna Iyer
97.	The Gram	a Panchayat in Kerala which complete	d firs	t in the Adhar Registration :
	(A)	Ambalavayal	(B)	Ollur
	(C)	Perumathy	(D)	Nilambur
98.	The first l	Malayali writer who won the 'Kendra S	ahith	ya Akadami' award :
	(A)	Thakazhi Sivasankara Pilla		
	(B)	Vakkam Muhammed Basheer		
	(C)	R. Narayana Panikkar		
	(D)	Akkitham Achuthan		
99.	The author	r of the book "Thulavarsha Pacha":		
	(A)	Hridaya Kumari	(B)	Balamaniyamma
	(C)	Mdhavi Kutty	(D)	Sugatha Kumari
100.	The First	Atomic power plant in India located at	:	
	(A)	Kalpakam	(B)	Tharapur
	(C)	Narora	(D)	Durgapur