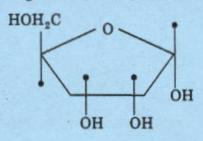
Maximum: 100 marks

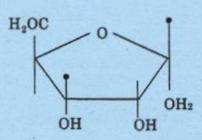
Time: 1 hour and 15 minutes

1.		ulate n belo		ve impulse in the	Frog's ne	erve muscle pr	eparation from the data
	(i)	Late	nt period with stir	mulation of spinal	end of th	e nerve = 0.01	sec.
	(ii)	Late	nt period with stir	mulation of muscle	e end of t	he nerve $= 0.00$)5 sec.
	(iii)	-	th of the nerve be		mulated p	points = 7.5 cm	
		so th	e velocity of the n	erve impulse is			
		(A)	1550 cm		(B)	1576 cm	
		(C)	1500 cm		(D)	15000 cm	
2.	Calc	ulate	the respiratory qu	otient from the da	atas are g	riven:	
	(i)	Volu	me of expired air	in 6 minutes = 30	liters		
	(ii)		entage of CO2 in				
	(iii)	Oxy	gen consumption i	n 6 minutes $= 147$	0 ml,		
			respiratory quotier				
		(A)	0.85		(B)	0.75	
		(C)	0.65		(D)	0.81	
3.	Dete	ermin	e the oxygen carr	ying capacity an	d oxygen	content of ar	terial and venous blood
		ples fi	rom the data are p	provided:			
	(i)	Perc	entage saturation	of arterial blood	with oxyg	en = 97%	
	(ii)	Perc	entage saturation	of venous blood w	vith oxyge	en = 75%	
	(iii)	Hen	noglobin concentra	tion = 14.5 g/dI .			Mand and manastirely
						itent of venous	blood are respectively.
		100000000000000000000000000000000000000	18.33 ml/dI, 14.3		(B)		4.57 ml/100 ml
		(C)	56.12 ml/dI, 23.3	37 ml/100 ml	(D)	23.11 ml/d1, 4	2.23 ml/100 ml
4.	Fine	l out t	the breathing rese	rve and the dyspn	ea index	from the data	provided below:
	(i)		piratory rate = 12/				
	(ii)		al volume = 500 m				
	(iii)	Max	imum Voluntary	Ventilation (MVV)) = 130 lit	ers	
		So I	Dyspnea index (Br	eathing reserve pe	ercent) is		
		(A)	88 %		(B)	95%	
		(C)	80%		(D)	100%	
5.	Calc	culate	the heart rate fr	rom the ECG pro	vided 150	00 by the num	iber of smallest squares
	bety	ween t	wo R waves are a	ssume 18, the hea	rt rate wi	ill be:	
		(A)	82 / min		(B)	78 / min	
		(0)	CO /min		(D)	72 / min	

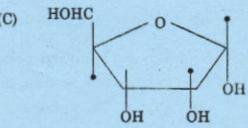
6.	Calculate the Renal Blood Flow (RBF) from the data given below. Date are: (i) Concentration of PAH in Urine (U _{PAH}) = 14 mg/ml (ii) Concentration of PAH in Plasma (P _{PAH}) = 0.03 mg/ml (iii) Rate of urine flow (V) = 1.5 ml/min (iv) Hematocrit (Hct) = 43%. The actual renal blood flow is				
		(A)	1450 ml per minute	(B)	1445 ml per minute
		(C)	1340 ml per minute	(D)	1350 ml per minute
7.	Calculate the urea clearance from the given data: (i) Concentration of urea in Urine (U) = 20 mg/ml (ii) Concentration of urea in Blood (B) = 38 mg/100 ml (iii) Rate of Urine Flow (V) = 1.5 ml/min. Urea clearance is				
		(A)	60 ml/min	(B)	64 ml/min
		(C)	720 ml/min	(D)	32 ml/min
8.	The	Red c	ell count of Males and Females are resp	pectiv	ely:
		(A)	Males $7.5 - 9.5$ million / mm ³ Female $7.0 - 8.5$ million / mm ³	(B)	Males $3.5 - 5.5$ million / mm ³ Female $3.0 - 5.0$ million / mm ³
		(C)	Males $4.0 - 7.5$ million / mm ³ Females $5.0 - 6.5$ million / mm ³	(D)	$\begin{array}{l} Males~4.5-6.5~million~/~mm^{3}\\ Females~4.0-5.5~million~/~mm^{3} \end{array}$
9.	Hem	oglobi	in of males and female are respectively	:	
		(A)	Male 13.5 – 18 g/dI Females 11.5 – 16 g/dI	(B)	Male 13.0 – 15 g/dI Females 10.5 – 15 g/dI
		(C)	Male 12.6 – 14 g/dI Females 10.6 – 12 g/dI	(D)	Male 14.5 – 19 g/dI Females 12.5 – 17 g/dI
10.	Blood	d – rei	ference intervals of Arterial gases is :		
		(A)	PaCO ₂ : 38-48 mm Hg	(B)	PaCO ₂ : 45-60 mm Hg
		(C)	PaCO ₂ : 60 - 70 mm Hg	(D)	PaCO ₂ : 35 - 45 mm Hg
11.	In re	spirat	tory system contain inspired air norma	lly:	
		(A)	O2: 30.96%; CO2: 0.09%; N2 = 69.95	%	
		(B)	O ₂ : 40%; CO ₂ : 1%; N ₂ = 59%		
		(C)	O ₂ : 20.96%; CO ₂ : 0.04%; N ₂ = 79%		
		(D)	O ₂ : 15%; CO ₂ : 1%; N ₂ = 84%		

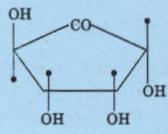

- 12. Kidneys of renal in maximum glucose reabsorptive capacity (Tm.) is normally :
 - (A) Male 100 300 mg/min Females 200 – 250 mg/min
 - (C) Male 300 450 mg/min Females 200 - 300 mg/min
- (B) Male 100 300 mg/min Females 100 – 300 mg/min
- (D) Male 300 450 mg/min Females 250 – 350 mg/min
- 13. The food item of dates, dried contains calories, proteins and fats are respectively.
 - (A) Calories 317 Proteins 2.5 Fats 0.4
- (B) Calories 217 Proteins 5.5 Fats 0.2
- (C) Calories 615 Proteins 4.7 Fats 0.1
- (D) Calories 1012 Proteins 5.7 Fats 0.1
- 14. The food item of Mutton of boiled contains calories, proteins and fats are respectively.
 - (A) Calories 300 Proteins 25.5 Fats 17.3 (B) Calories 194 Proteins 18.5 Fats 13.6
 - (C) Calories 400 Proteins 35.7 Fats 4.7 (D) Calories 250 Proteins 17.5 Fats 10.9
- 15. In milk of cow's and curd contains calories, proteins and fats are respectively.
 - (A) Calories 67 Proteins 3.2 Fats 4.1
- (B) Calories 100 Proteins 10.7 Fats 1.2
- (C) Calories 102 Proteins 15.6 Fats 1.3
- (D) Calories 50 Proteins 2.6 Fats 3.3
- 16. Molecular structure of cytosine bases of DNA is:

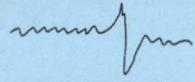
(B) NH₃
C
N CH
O = C CH


(C)
$$\begin{array}{cccc} NH_2 \\ C \\ N & CH_3 \\ O = C & CH \\ N & H \end{array}$$

(D) $\begin{array}{c} NH_2 \\ C \\ N \\ CH \\ O = C \\ CH \\ N \\ H \end{array}$

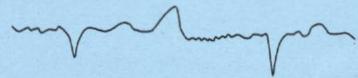

The classes of sugar of monosaccharide of example of Ribose is:


(B)


(C)

(D)

The following EEG diagram is represent: 18.


(A) Biphasicspilce

- (B) Biphasic sharp wave
- (C) Monophasic sharp wave
- (D) Slow wave sleep wave

EEG typically has frequency range of Beta (β) is represented the following:

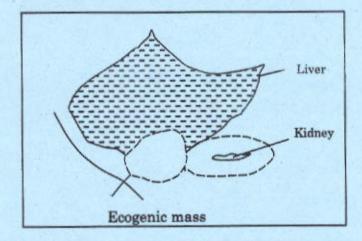
- (A) Beta (β) frequency range (above 17.5 Hz)
- Beta (β) frequency range (2.5 3.5 Hz)
- Beta (β) frequency range (7.5 12.5 Hz) (C)
- (D) Beta (β) frequency range (above 12.5 Hz)

20. The following ECG diagram is represented:

PVC (A)

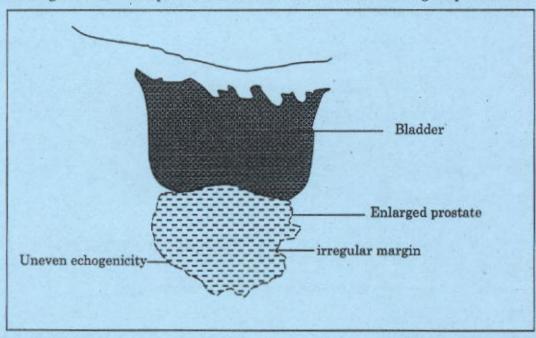
(B) Normal sinus rhythm

Tachy cardia


(D) None of them 21. The cross correlation between the template sequence of the QRS complex and the incoming signal is computed using the following equation:

(A)
$$V_{xy}(m) = \begin{cases} \frac{1}{N} \sum_{n=0}^{N-m-1} x(n+m)y(n^2) & \text{for } 0 \le m \le N-1 \\ \frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n) y(n+m) & \text{for } -(N-1) \le m < 0 \end{cases}$$

(B)
$$V_{xy}(m) = \begin{cases} \frac{1}{N} \sum_{n=0}^{N-m-1} x(n+m)y(n) & \text{for } 0 \le m \le N-1\\ \frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n^2) & y(n+m) & \text{for } -(N-1) \le m < 0 \end{cases}$$


(C)
$$V_{xy}(m) = \begin{cases} \frac{1}{N} \sum_{n=0}^{N-m-1} x(n+m)y(n) & \text{for } 0 \le m \le N-1\\ \frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n) & y(n+m) & \text{for } -(N-1) \le m < 0 \end{cases}$$

- (D) None of them
- 22. The following diagram of ultrasound appearances is represented:

- (A) Myelolipoma (LS)
- (B) Neuroblastoma (LS)
- (C) Pheochromocytoma (LS)
- (D) Right adrenal mass (LS)

23. The following ultrasound of prostate of MALE PELVIS related image represented as :

(A) Normal Prostate (LS)

(B) Benign Prostatic Hypertrophy (LS)

(C) Prostatitis (LS)

(D) Prostatic Car Cinoma (TS)

- 24. Laws of Radiations is defined by:
 - (A) New dose = $\frac{\text{New dose} \times (\text{new distance})^2}{(\text{Old distance})^2}$
 - (B) New dose = $\frac{(Old dose)^2 \times (new distance)}{(Old distance)^2}$
 - (C) New dose = $\frac{(\text{Old dose})^2 \times (\text{new distance})^2}{(\text{Old distance})}$
 - (D) New dose = $\frac{Old \text{ dose} \times (\text{new distance})^2}{(Old \text{ distance})^2}$
- 25. The following laws is states the rays must be absorbed to produce the effect will be produced at that which the rays are absorbed.
 - (A) Law of Grothus Drapper
- (B) Cosine Law

(C) Law of Square

(D) Arndt - Schultz law

26.		e electrodes used to method is used allel method of placement?	over large	er area of the bo	dy. eg spine and is also
	(A)	Co-planar positioning of electrode	(B)	Contra-planar p	positioning of electrode
	(C)	Mono - polar method	(D)	Cross - fire tec	hnique
27.	Convert 1	20 ° F to ° C (conversion of Fahrenh	eit Scale	to Centigrade S	cale) is:
	(A)	48.8° C	(B)	56.8°C	
	(C)	30°C	(D)	42°C	
28.	This type	of microscope has a triple nosepiece	with thr	ee objectives an	d two eye pieces.
	(A)	Leitz Wetzler microscope	(B)	Bausch and Lo	mb microscope
	(C)	Moreau microscope	(D)	Wilson's screw	barrel type microscope
29.		of objective lenses used in microsonatic aberration of red, blue, green.	The state of the s		Aplanatic, no spherical
	(A)	Aplanatic	(B)	Apochromatic	
	(C)	Achromatic	(D)	(A) and (C)	
30.	In rate of	sedimentation defined as following	:		
	(A)	$\gamma = \frac{2}{9} \times \frac{\gamma_{\rho}^2 (\rho_{\rho} - \rho_{m})}{\eta} \times g$	(B)	$\gamma = \frac{2}{9} \times \frac{\gamma_{\rho} (\rho_{\rho} - \rho_{\rho})}{\eta^{2}}$	$\frac{\rho_m}{2} \times g$
	(C)	$\gamma = \frac{2}{18} \times \frac{\gamma_p^2 (\rho_p - \rho_m)^2}{\eta^2} \times g$	(D)	$\gamma = \frac{2}{18} \times \frac{\gamma_p^2 (\rho_p - 1)}{\eta}$	$(-\rho_m)\times g$
31.		of Rotors used for low-speed centric e rotor, the pellet is deposited along			
	(A)	Fixed angle rotors	(B)	Elutriator roto	rs
	(C)	Vertical tube rotors	(D)	Zonal rotors	
32.		e of electrode contains mercury of pH measurements.	chloride a	and saturated	solution of Potassium
	(A)	Glass Electrode	(B)	Calomel Electr	ode
	(C)	Compound Electrode	(D)	Armstrong Ele	ctrode

33.	This type of manometers is used measure pressure and contains upto 14 experimental flasks and small U-tube capillaries are connected to the same reference flask by gassing manifold.				
	(A)	Warburg manometer	(B)	Tilted manometer	
	(C)	Gilson constant manometer	(D)	A U-tube manometer	
34.		form of chromatography was used by famino acids.	y Mart	in Consden and Gordon to separate a	
	(A)	Paper chromatography	(B)	Thin layer chromatography	
	(C)	Column chromatography	(D)	Adsorption chromatography	
35.		ving X-ray technique and methods of I by crystals.	X-ray s	pectroscopy are based on the scattering	
	(A)	X-ray absorption	(B)	X-ray reflection	
	(C)	X-ray diffraction	(D)	X-ray fluorescence	
36.	Determin			the output noise voltage is 0.005 V. ls. Ignore the source resistance. The	
	(A)	70 dB	(B)	10 dB	
	(C)	60 dB	(D)	1000 dB	
37.		gauge of 120 Ω (nominal) resistance wood stretches by only 2 mm under a he		auge factor GF = 2 is mounted on a rod. ess. Find the change in resistance is :	
	(A)	0.096 Ω	(B)	1 kΩ	
	(C)	0.05 Ω	(D)	0.5 Ω	
38.	The follow	ving irregular ECG shows what type o	of abnor	emal of ECG signal:	
	~		W	~~~~~	
	(A)	Sinus tachycardia	(B)	Atrial flutter	

(C) Ventricular fibrillation

(D) First degree AV block

39.	A patient has an 8 I/min CO. His pulmonary artery has a 14 mm diameter with a 20 mm Hg pressure. His left atrium pressure is 8 mm Hg. What is the patient's pulmonary vascular resistance?					
	(A)	2.5 mm Hg/I/min	(B)	1.5 mm Hg/I/min		
	(C)	5.6 mm Hg/I/min	(D)	3.5 mm Hg/I/min		
40.	Which lav	v states that the total pressure exercises of the various gases in the mi	rted in xture?	the vessel is equal to the sum of the		
	(A)	Bayer's Law	(B)	Boyle's Law		
	(C)	Dalton's Law	(D)	Charle's Law		
41.	The follow	ving devices detects some heart rhyts and automatically delivers shocks to	hm disc termin	orders, such as premature ventricular atte such rhythm disorders:		
	(A)	Automated external defibrillator	(B)	Inplantable cardio verter defibrillator		
	(C)	Both of (A) and (B)	(D)	None of them		
42.	. This type of pacemaker paces the ventricle, but since it does not sense the ventricles, there is no response to sensory input. This type of pacing is achieved after by pass surgery with a handheld external pacemaker.					
	(A)	VVI	(B)	DVI		
	(C)	V00	(D)	DDD		
43.	Non-inva with an a	sive blood pressure measurement ca utomatic pump can be set to inflate t	n be au he cuff	utomated by replacing the hand pump when activated. This method is:		
	(A)	Oscillometric method	(B)	Non-invasive method		
	(C)	Automated hand pump method	(D)	Auscultatory method		
44.	This type for the flu	of infusion pumps performs uses a fluid to flow in to body this pump is als	uid that o called	t is hung above the pump and two tubes a peristaltic pump.		
	(A)	Volumetric infusion pump	(B)	Syringe infusion pump		
	(C)	Fluid infusion pump	(D)	Multiple infusion pump		
45.		ice is used to decrease myocardial oxy Output (CO):	gen der	nand while at the same time increasing		
	(A)	Dialysis machine	(B)	Intra-aortic balloon pump machine		
	(C)	Heart-lung machine	(D)	Aphaeresis machine		

11

- 46. The sum of the tidal volume and the inspiratory reserve volume is called:
 - (A) Expiratory reserve volume
- (B) Residual volume
- (C) Total Lung capacity volume
- (D) Inspiratory capacity

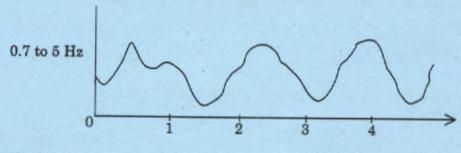
- 47. Apnea is a:
 - (A) Sleep abnormality

(B) Cessation of breathing

(C) Nervous disorder

- (D) Infection
- 48. Sensitivity of a transducer or electrode is defined as the following :
 - (A) Input of electrode / Output of electrode (B) Change of input / change of output
 - (C) Actual output / measured output
- (D) None of them
- 49. The resistance temperature detector of resistance at T predicted by the formula.
 - (A) $R(T) = R(T) \times [1 + \alpha_0(T_0 T)]$
- (B) $R(T) = R(T_0) \times [1 + \alpha_0(T_0 T)]$
- (C) $R(T) = R(T_0) \times [1 + \alpha_0 (T T_0)]$
- (D) $R(T) = R(T) \times [1 + \alpha_0 (T T_0)]$
- 50. This device is used for spraying liquid or medication into the patient's airways. The gas is forced through the jet by squeezing the rubber bulb:
 - (A) Humidifier

(B) Nebulizer

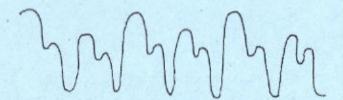

(C) Sprayfier

- (D) LTV series
- 51. The following formula is represented find the capacity by:

Volume of the Chamber × Change in chamber pressure due to breathing

Change in thorax pressure

- (A) Urine bladder capacity
- (B) Heart volume capacity
- (C) Breathing volume capacity
- (D) Total lung capacity
- 52. The following brain waves of diagram is represented.


(A) Alpha

(B) Beta

(C) Theta

(D) Delta

53. This type of noise wave form is called as:

- (A) Noise of Erratic ragged waveform
- (B) Flattened waveform
- (C) Alteration of high and low waves in a regular pattern
- (D) Normal waveform
- 54. The percentage reflections of ultrasound at tissue interface of Blood-Brain, Blood Kidney are given and which one is correct?
 - (A) Blood Brain: 0.3%, Blood Kidney 0.7%
- (B) Blood Brain: 0.7%, Blood Kidney 12%
- (C) Blood Brain: 3%, Blood Kidney 17%
- (D) Blood Brain: 3%, Blood Kidney 13%
- 55. What type of echoes represents as clots rather than vertical deflections and the brightness represents the strength of the reflected echo of ultrasound?
 - (A) A mode

(B) B - mode

(C) M - mode

- (D) N mode
- 56. This type of transducer format use to endovaginal for the sequoia ultrasound machine:
 - (A) 5 C₂

(B) 4 V₂

(C) 8 C₄

- (D) EV-8 C₄
- 57. Radiographic systems classified as:
 - (A) Chest X-ray radiography, surgical systems
 - (B) Dental radiography, computer tomography
 - (C) Portable or mobile units, chiropractic systems
 - (D) Both of (A), (B), (C)
- 58. This is involves a dynamic X-ray imaging of physiological functions such as flow of barium through the intestine or the process of injecting a contrast medium into the heart:
 - (A) Fluoroscopy

(B) Tomography

(C) Vertical Bucky

(D) Echography

59.	This type	of image is exam	nination and inst	pection of	the interior of body organs, joints of	
		hrough an device is		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	the interior of body organs, joints o	
	(A)	Fluoroscopy		(B)	Endoscopy	
	(C)	Colonoscopy		(D)	Sigmoidoscopy	
60.	This type	of tube uses viewi	ng pulmonologist	or a thor	acic surgeon called :	
	(A)	Colonoscopy		(B)	Sigmoidoscopy	
	(C)	Endoscopy		(D)	Bronchoscopy	
61.	What type	e of laser is used fo	or photocoagulation	on in oph	thalmology?	
	(A)	Argon laser		(B)	Ruby laser	
	(C)	Nd : YAG laser		(D)	CO ₂ laser	
62.	Which for	mula is correct for	the total count o	f either V	VBC or RBC is given as?	
	(A)					
			(Area counte	d mm²) ×	(Dilution factor)	
	(D)	(Number of cells counted) × (Dilution factor)				
	(B)	Total of count =	(Area count	ted mm²)	× (Depth 0.1 mm)	
		(Area counted mm²) × (Depth 0.1 mm)				
	(C)	Total of count =			d) × (Dilution factor)	
			(L'union of oc	as counte	a) × (Direction factor)	
	(D)	None of them				
63.	What LA	B referred to an a g many diseases in	anatomic patholo ncluding cancer?	gy prepa	res tissue and bone samples used for	
	(A)	Microbiology lab		(B)	Virology lab	
	(C)	Speciality chemis	stry lab	(D)	Histology lab	
64.	Person wh	no responsible for t	the daily operation	n of the la	ab including scheduling of personal :	
	(A)	Lab Administrate	or	(B)	Lab Supervisor	
	(C)	Lab Director		(D)	Lab Manager	
65.	This technilaboratory	nician who draws to for proper testing	the patient's bloo	d and ens	sures that sample are submitted to the	
	(A)	Lab Technician		(B)	Nurse	
	(C)	Phlebotomist		(D)	Clinic Technician	
25/2	015		14		A	

66.	This type	of shock hazards occurs when	current is	applied to the surface of the body,
00.		tissue injury and unnecessary sti		
	(A)	Macro shock	(B)	Electric shock
	(C)	Electrode shock	(D)	Micro shock
67.	OSHA sta	ndard under 29 CFR 1910.1200 fo	r the safety	y of:
	(A)	Radiation safety	(B)	Biological safety
	(C)	Fire and explosive safety	(D)	Chemical safety
68.	MSDS sta	nds for :		
	(A)	Micro Shock Distribution System	(B)	Medical Supply Distribution System
	(C)	Metrial Safety Data Sheet	(D)	None of the above
69.	DICOM fo	or standard defined as :		
	(A)	Digital Internet Communication		
	(B)	Digital Image Components		
	(C)	Digital Imaging and Communica	tions in Me	edicine
	(D)	Digital Internel and Communica	tion in Me	dicine
70.	NIC for:			
	(A)	Network Internet Card	(B)	Network Internet COM
	(C)	Network Internet Communication	on (D)	Network Interface Card
71.	Which on	e is correct for standard symbols	used in el	ectro surgery of hand operated output
	connection	n for hand operated monopolar ac	cessories:	*
	(A)	Sul	(B)	_
				т-
	(C)		(D)	
72.	This type	of shock occurs when a patients h	as lost 15-	-25% of intravascular volume :
	(A)	Hypovolemic shock	(B)	Cardiogenic shock
	(C)	Septic shock	(D)	Electric shock
73.	Leptospin	a is the example of the following	which one o	of:
	(A)	Bacteria	(B)	Spirochaetes
	(C)	Bacilli	(D)	Rickettsias
A			15	25/2015 [P.T.O.]

74.	The example of Aspirin is the following which one of the source of drugs:				
	(A)	Mineral	(B)	Micro-organisms	
	(C)	Vegetable	(D)	Synthetic	
75.	Which one	e is a water-soluble benzodiazepine	which is	2-3 times more potent than diazepam?:	
	(A)	Midazolam	(B)	Ketamine	
	(C)	Diethyl Ether	(D)	Propofol	
76.	ASCII cha	racter 'A' of 8-bit octal is represent	ed by :		
	(A)	201	(B)	101	
	(C)	1	(D)	301	
77.	Which one		cation of	files that are available for the public to	
	(A)	Archie	(B)	Gophers	
	(C)	WAIS	(D)	Veronica	
78.		e is correct for teaching and train trough surgical procedures?	ing at a	distance, providing real time guidance	
	(A)	Tele radiology	(B)	Tele-dermatology	
	(C)	Tele psychiatry	(D)	Tele mentoring	
79.		example web address of Tele- luate surgery at Versity College, Lo		for a national project in teaching	
	(A)	http://av.avc.ucl.al.uk/tttp/insur	rect.html		
	(B)	http://www.atmeda.org/news.ove	rview.htn	nl	
	(C)	http://telemedicine.org/lecturer.h	ntml		
	(D)	http://www.healthnet.org./teachin	g.html		
80.	TIE is an	online information service through	Internet	represented by :	
	(A)	Telecommunication Internet Equi	pment		
	(B)	Telemedicine Information Exchan	ige		
	(C)	Telecare Information Exchange			
	(D)	Telementry Informatics Encoding			
81.	India's Ma	ars mission is officially known as :			
	(A)	Mangalyan	(B)	Mangala	
	(C)	Mars mission	(D)	Mars Orbitor mission	
25/2	015	16		A	

82.	Which country won the Davis Cup Tournament 2013?				
	(A)	Zchek Republic	(B)	Russia	
	(C)	America	(D)	England	
83.	Bitcoin is ATM is lo	the digital currency used for internet	tradi	ng. Where is the World	's first Bitcoin
	(A)	China	(B)	Canada	
	(C)	Singapore	(D)	Sweedan	
84.	Who is the	e new Director General of World Trade	Orga	nization?	
	(A)	Pascal Lamy	(B)	Margarete Chan	
	(C)	Roberto Asavedo	(D)	Ban Ki Moon	
85.	Who won	the Abel prize 2013?			
	(A)	Pierre Deligne	(B)	Endre Szemeredi	
	(C)	John Torence	(D)	John Milnor	
86.	Sreenagar	the capital city of Jammu and Kashm	ir situ	ated on which river bank	k?
	(A)	Beas	(B)	Chenab	
	(C)	Indus	(D)	Jhelum	
87.	The Soil 8	Survey of India established in which ye	ar?		
	(A)	1976	(B)	1949	
	(C)	1956	(D)	1963	
88.	The leade movemen	ers of Home Rule Movement in India b	orrow	ed the term Home Rule	from a similar
	(A)	Scotland	(B)	Ireland	
	(C)	England	(D)	Finland	
89.	Who was	the first commander of Indian Nationa	l Arm	y?	
	(A)	Mohan Singh	(B)	Subhash Chandra Bose	
	(C)	Rash Bihari Bose	(D)	Capt. Lakshmi	
90.	Mixed Ec	onomy was envisaged for the first time	in the	:	
	(A)	Preamble of Indian Constitution	(B)	First Five Year Plan	
	(C)	Second Five Year Plan	(D)	Bombay Plan	

91.	River Pan	ba originates from:		
	(A)	Marayur	(B)	Peerumedu
	(C)	Iravikulam	(D)	Munnar
92.	Which am	ong the following is the major	soil type of Ke	rala?
	(A)	Laterite	(B)	Alluvial
	(C)	Red soil	(D)	Black soil
93.	According	to 2011 census which District	in Kerala has	the highest density of population:
	(A)	Alappuzha	(B)	Malappuram
	(C)	Thiruvananthapuram	(D)	Kollam
94.	In which	year Peoples Planning introdu	ced in Kerala?	
	(A)	1995	(B)	1996
	(C)	1997	(D)	1998
95.	Time Mag	gazines "Person of the year 201	13" goes to :	
	(A)	Edward Snodan	(B)	Barac Obama
	(C)	Francis Pope	(D)	Edith Windsdin
96.	Who first	introduced the system "A scho	ool along with	every church"?
	(A)	Poikayil Yohannan	(B)	Kuriakose Chavara
	(C)	Dr.Hermen Gundert	(D)	Dr.Benjamin Baily
97.	The Mala	yali who worked under Gandh	iji as the Edito	or of Young India?
	(A)	M.C.Joseph	(B)	T.K.Madhavan
	(C)	K.Ayyappan	(D)	Barrister George Joseph
98.	The socia	l reformer in Kerala who recei	ved Padma Bh	ushan in 1966?
	(A)	Sree Narayana Guru	(B)	Chattambi Swamikal
	(C)	Mannathu Padmanabhan	(D)	Ayyankali
99.	Who put	forwarded the slogan "One cas	te, one religior	n, one clan, one world, one God"?
	(A)	Dr.Ayyathan Gopalan	(B)	Kurumban Daivathan
	(C)	Ayya Vaikundar	(D)	Vagbhatananda
100	. Who cam	e to be known as the Lincoln o	f Kerala?	
	(A)	Thycad Ayya	(B)	Pandit Karuppan
	(C)	Dr. Palpu	(D)	Kumaranasan