PROVISIONAL ANSWER KEY

Question Paper Code:	$44 / 2017 / O L$
Category Code:	$315 / 2015$
Exam:	HSST(Jr) Mathematics NCA
Medium of Question:	English
Date of Test	$02-06-2017$
Department	Higher Secondary Education
Alphacode	A

Question1:-Who wrote the book namely 'Kristhu sahasra namam' ?

> A:-Pambadi John Joseph

B:-Chattampi Swamikal
C:-C. Kesavan
D:-Chavara Kuriakkose Elias Achan Correct Answer:- Option-C
Question2:-Silvassa is the capital city of A:-Daman and Diu
B:-Puducherry
C:-Dadra Nagar Haveli D:-Mizoram Correct Answer:- Option-C
Question3:-Brian Acton and Jan Koum are the founders of popular mobile app namely A:-WhatsApp
B:-Instagram
C:-Google
D:-Google chrome Correct Answer:- Option-A
Question4:-Who among the following was the leader of 'Rajadhani March' of 1939 ?
A:-Akkamma Cheriyan
B:-T.M. Varghese
C:-Vakkam Abdulkhadar Maulavi
D:-A.K. Gopalan Correct Answer:- Option-A
Question5:-'Chenthuruni' wildlife sanctuary is in \qquad district of Kerala. A:-Idukky B:-Pathanamthitta C:-Kollam D:-Ernakulam Correct Answer:- Option-C
Question6:-Which was the main centre of Kallumala Samaram of 1915 led by Ayyankali ? A:-Venganoor
B:-Perinad
C:-Panmana
D:-Vanchiyoor Correct Answer:- Option-B
Question7:-'Yudh Abhyas 2016' is the joint military training exercise between India and A:-France
B:-Japan
C:-Korea
D:-USA
Correct Answer:- Option-D
Question8:-'Changampuzha; Nakshathrangalude Snehabhajanam' is the book written by A:-K.P. Appan
B:-M.K. Sanu
C:-M. Leelavathi
D:-N. Krishnapillai
Correct Answer:- Option-B
Question9:-'Oneirology' is the study of

A:-Dreams

B:-Beauty of human
C:-Birds
D:-Fashion
Correct Answer:- Option-A
Question10:-'Thiruvithamkoor Rashtreeya Mahasabha' was founded under the leadership of
A:-Dr. Velukkutty Arayan
B:-T.K. Madhavan
C:-Pandit Karuppan
D:-G.P. Pillai
Correct Answer:- Option-A
Question11:-'He who has a taste for every sort of knowledge and who is curious to learn and is never satisfied may be justly termed a philosopher', was quoted by

A:-Rousseau in 'Emile'
B:-John Dewey in 'Freedom and Culture'
C:-Plato in 'The Republic'
D:-Aristotle in 'Aristotle on Education'
Correct Answer:- Option-C
Question12:-Role playing is developed by using
A:-Micro teaching
B:-Simulation technique
C:-Interaction analysis
D:-All the above
Correct Answer:- Option-B
Question13:-Anecdotal record techniques is used in
A:-Measurement
B:-Evaluation
C:-Examinations
D:-None of these Correct Answer:- Option-B
Question14:-Good teachers are known not for the fund of knowledge they possess but for their
A:-Astute sense of wit and wisdom
B:-Awe-inspiring personality
C:-Warm and close relationship with their students
D:-Enviable teaching methodology
Correct Answer:- Option-D
Question15:-To raise the standard of education, it is necessary
A:-To evaluate students continuously
B:-To give high salary to teachers
C:-To revise curriculum
D:-To make good school building
Correct Answer:- Option-A
Question16:-A survey design that collects consensus opinions of Panel of experts and the judgement is known as
A:-Historical method
B:-Case study method
C:-Delphi technique
D:-Interview method
Correct Answer:- Option-C
Question17:-If you find someone else publishes work similar to yours before your project is completed, what could you do ?
A:-There is nothing you can do so do not mention it in your study
B:-Completely revamp your ideas so you are not replicating it in your study
C:-Acknowledge it in your report and evaluate the study
D:-Present report after making some changes in your hypothesis and aims
Correct Answer:- Option-C
Question18:-A technique of building up a list or a sample of a special population by using an initial set of members as
informants is called
A:-Quota sampling
B:-Snowball sampling
C:-Convenience sampling

D:-Purposive sampling

Correct Answer:- Option-B

Question19:-From research viewpoint seminars, conferences, symposia, workshops etc. whether national or international are the finest forums for

A:-Scientific interaction among professionals
B:-Social interaction among like-minded individuals
C:-Gathering latest knowledge on a research problem
D:-Locating, research problems in a field of knowledge
Correct Answer:- Option-D
Question20:-The methods of statistics which is used to derive conclusion about the characteristics of the whole with the help of data is called

A:-Derivative statistics
B:-Descriptive statistics
C:-Narrative statistics
D:-None of them
Correct Answer:- Option-A
Question21:-Which article of the constitution is known as necessary evil ?
A:-Article 17
B:-Article 15
C:-Article 32
D:-Article 22
Correct Answer:- Option-D
Question22:-Which amendment of the constitution lowered voting age from 21 to 18 ?
A:- ${ }^{-} 42^{\wedge}(\mathrm{nd}){ }^{`}$
B:- ${ }^{-44^{\wedge} \text { (th) }}$
C:- ${ }^{-61 \wedge(s t)}{ }^{\wedge}$
D:-‘69^(th)`
Correct Answer:- Option-C
Question23:-When a constitution amendment bill is sent to the president of India, he
A:-has to sign it
B:-may return it for reconsideration
C:-may veto it
D:-may refer it to Supreme Court for advice
Correct Answer:- Option-A
Question24:-How can a member of the U.P.S.C. be removed from service?
A:-only by the president of India
B:-only by impeachment
C:-on reaching the age of 60 (sixty)
D:-none of the above
Correct Answer:- Option-A
Question25:-Parliament can legislate in which of the following?
A:-actionable wrongs
B:-bankruptcy and insolvency
C:-trust and trustees
D:-all of the above
Correct Answer:- Option-D
Question26:-Under prevention of children from Sexual Offences Act, child means
A:-a person under 18 years of age
B:-a person under 14 years of age
C:-a person under 16 years of age
D:-none of the above
Correct Answer:- Option-A
Question27:-According to sexual harassment of women at work place (prevention, prohibition and redressal) Act, 2013, for non compliance with the provisions of the Act, employer is liable to a fine of

A:-Rs. 20,000
B:-Rs. 50,000
C:-Rs. 1,00,000
D:-None of the above
Correct Answer:- Option-B
Question28:-In order to take organ for donation from a person who has under gone brain death

A:-two certifications are required from any two doctors six hours apart
B:-three certifications are required from three neurologists 4 hours apart
C:-two certifications are required 6 hours apart from doctors nominated by government and two must be neurologists
D:-none of the above
Correct Answer:- Option-C
Question29:-National Rural Employment Guarantee Act was passed in the year
A:-2006
B:-2007
C:-2008
D:-2005
Correct Answer:- Option-D
Question30:-Which among the following is a flow of polluter pay principle?
A:-there is ambiguity in determining who is a polluter
B:-a large number of poor house holds, informal sector firms and subsistence farmers cannot bear any additional
charges for waste disposal
C:-small and medium size firms from formal sector, find it difficult to pass on higher costs to domestic end users of the product

D:-all of the above

Correct Answer:- Option-D
Question31:-The complete bipartite graph `K_(7,5)` has
A:-2 edges
B:-12 edges
C:-35 edges
D:- $7^{\wedge}(5)^{`}$ edges
Correct Answer:- Option-C
Question32:-Area of the ellipse ` \(\left(x^{\wedge}(2)\right) /(25)+\left(y^{\wedge}(2)\right) /(16)=1^{`}\) is
A:-20`Pi`
B:-`(320)/(3)pi C:-` (400)/(3) pi
D:-400`Pi Correct Answer:- Option-A Question33:-Perimeter of the cardioid \(r=1-\cos ^{`}\) Theta` is A:-1 B:-2 C:-4 D:-8 Correct Answer:- Option-D Question34:-Area of the surface generated by revolving the curve \(y=x\) about the \(x\)-axis from \(x=0\) to \(x=1\) is A:-2` pi` B:- \({ }^{-} 2 \operatorname{sqrt}(2) p i^{`}\)
C:-`sqrt(2)pi`
D:-`4pi`
Correct Answer:- Option-B
Question35:-In Boolean algebra the law $a+(a * b)=a$ is known as
A:-idempotent law
B:-distributive law
C:-boundedness law
D:-absorption law Correct Answer:- Option-D
Question36:-Transcendence of e was proved by
A:-Euler
B:-Cauchy
C:-Euclid
D:-Hermite
Correct Answer:- Option-D
Question 37 :-Which of the following is false ?
A:- $2^{\wedge}(13)-=1(\bmod 3)^{\wedge}$
B:- $3^{\wedge}(13)-=1(\bmod 2)^{\prime}$
C:- ${ }^{`} 3^{\wedge}(2)=1(\bmod 3)^{`}$

D:-` \(13^{\wedge}(3)-=1(\bmod 2)^{`}\)
Correct Answer:- Option-A
Question38:-Equation of the tangent to the circle ` \(x^{\wedge}(2)+y^{\wedge}(2)=1^{`}\) at ${ }^{`}((1) /(\operatorname{sqrt}(2)),(1) /(\operatorname{sqrt}(2)))^{`}$ is
A: $-x+y=1$
B:- ${ }^{-} x+y=(1) /(s q r t(2))^{\prime}$
C:- ${ }^{-} x+y=\operatorname{sqrt}(2)^{`}$
D:-x-y=1
Correct Answer:- Option-C
Question39:-Degree of the field extension ` \(\mathrm{Q}(\mathrm{sqrt}(3)+\operatorname{sqrt}(2))^{`}\) over ${ }^{`} \mathrm{Q}(\operatorname{sqrt}(3))^{\prime}$ is
A:-1
B:-2
C:-3
D:-4
Correct Answer:- Option-B
Question40:-Number of subgroups of ‘ ZZ_(18)' $^{\prime}$ is
A:-2
B:-3
C:-6
D:-18
Correct Answer:- Option-C
Question41:-Which of the following function `f:RR->RR` is not a permutation?
A: $-` f(x)=x+1$
B:- $-f(x)=x-1$ -
C: $-{ }^{`} f(x)=x^{\wedge}(2)-1$
D:- $-f(x)=x^{\wedge}(3)-1^{`}$
Correct Answer:- Option-C
Question42:-Set of all integers `\(Z Z^{\prime}\) is A:-an integral domain but not a field B:-a division ring but not a field C:-a strictly skew field but not a field D:-a division ring but not an integral domain Correct Answer:- Option-A Question43:-Number of generators of`ZZ_(20)' is
A:-1
B:-2
C:-4
D:-8
Correct Answer:- Option-D
Question44:-Let `RR` be the ring of real numbers. Units of `RR` are
A:-0
B:-elements of `RR-\{0\} `
C:-1
D:-elements of `RR-\{1\}`
Correct Answer:- Option-B
Question45:-Which of the following is false ?
A:-Every integral domain is a field
B:-Every field is an integral domain
C:-It p is a prime, then ' $Z Z_{-}(p)$ ' is a field
D:-Every finite integral domain is a field
Correct Answer:- Option-A
Question46:-The remainder of ${ }^{`} 3^{\wedge}(50)^{\prime}$ when divided by 13 is
A:-6
B:-9
C:-3
D:-0
Correct Answer:- Option-B
Question47:-`nnn_(\(n=1)^{\wedge} 00((-1) /(n),(1) /(n))^{`}=\)
A:-[-1, 1]
B:- $\{0\}$

C:-`Phi`
D:-(0, 1)
Correct Answer:- Option-B
Question48:-`lim_(n->oo)` `(1+(log_(e)^(2))/(n))^(n)`=
A:-1
B:-2
C:-` \({ }^{\wedge}(2)^{`}\)
D:-` \(\log _{-}(e)^{\wedge}(2)^{`}\)
Correct Answer:- Option-B
Question49:-Let $g(x)=|\cos x|$. Then
A:- $g(x)$ is nowhere differentiable
$B:-g(x)$ is everywhere differentiable
C:-g(x) is differentiable everywhere except $x=n ` \mathrm{Pi}^{`}$, ${ }^{\prime}$ ninZZ ${ }^{`}$
$\mathrm{D}:-\mathrm{g}(\mathrm{x})$ is differentiable everywhere except ${ }^{`} \mathrm{x}=(2 \mathrm{n}+1) \mathrm{Pi} / 2^{`}$, `ninZZ`
Correct Answer:- Option-D
Question50:-
Let $f(x)=\left\{\begin{array}{l}x^{2} \sin \frac{1}{x}, \text { if } x \neq 0 \\ 0, \text { otherwise }\end{array}\right.$
Then :
A:- f is differentiable at all points, but f^{\prime} is not a continuous function
B :-f is not differentiable but it is continuous
C:-f is neither differentiable nor continuous
D:-f is differential and f^{\prime} is continuous
Correct Answer:- Option-A
Question51:-`int_0^ooe^(-x^(2))dx=`
A:-1
B:-`(Pi)/(2)`
C:-`(sqrt(Pi))/(2)`
D:-`pi`
Correct Answer:- Option-C
Question52:-Bolzano-Weierstrass theorem
A:-Every convergent sequence of real numbers is bounded
B:-A bounded sequence of real numbers has a convergent subsequence
C:-Every sequence of real numbers has a convergent subsequence
D:-A sequence of non-negative real numbers is bounded if and only if it is convergent
Correct Answer:- Option-B
Question53:-`lim_(x->0) ` $((1-\cos x) \sin x) /\left(x^{\wedge}(2)+x^{\wedge}(3)\right)=`$
A:--1
B:-0
C:- ${ }^{-} 1 / 2 `$
D:-1
Correct Answer:- Option-C
Question54:-` \({ }^{\wedge}(321)+(1) /\left(i^{\wedge}(123)\right)=`\)
A:-0
B:-2
C:-2i
D:-1 - i
Correct Answer:- Option-C
Question55:-|z+3i|+|z-3i|=8 represents
A:-a straight line
B:-a circle
C:-a hyperbola
D:-an ellipse
Correct Answer:- Option-D
Question56:-Harmonic conjugate of ${ }^{`} u(x, y)=x^{\wedge}(2)-y^{\wedge}(2)^{\prime}$ is
A:- $\left.\begin{array}{c} \\ \\ \\ \\ \\ \end{array} x, y\right)=x^{\wedge}(2)+y^{\wedge}(2)^{\wedge}$
B:- ${ }^{`} v(x, y)=(x+y)^{\wedge}(2)^{\wedge}$
C:-`v(x,y)=(x-y)^(2)`

D:-`v(x,y)=2xy Correct Answer:- Option-D Question57:-Let C be the positively oriented circle \(|z|=4\). Then `oint_(C) $\left(z^{\wedge}(2) d z\right) /(z-1)+o i n t _(C)\left(z^{\wedge}(2) d z\right) /\left((z-1)^{\wedge}(2)\right)=`$
A:-` 6 pii`
B:- ${ }^{-} 2$ pii
C:-`pii D:-0 Correct Answer:- Option-A Question58:-If \(f(z)\) is continuous in a simply connected domain \(D\) and if `oint_(C) $f(z) d z=0 `$ for every closed path in D, then
$f(z)$ is analytic in D
A:-Liouville's theorem
B:-Morera's theorem
C:-Cauchy's integral theorem
D:-Cauchy's integral formula
Correct Answer:- Option-B
Question59:-The radius of convergence of the power series `sum_(\(n=0)^{\wedge} 00^{`}((2 n)!) /\left((n!)^{\wedge}(2)\right)(z-2)^{\wedge}(n)^{`}\) is A:-0 B:- \({ }^{-} 1 / 4{ }^{`}\)
C:- ${ }^{-} 1 / 2^{`}$
D:-‘00`Correct Answer:- Option-B Question60:-At \(z=0\), the function` $f(z)=e^{\wedge}((1) /(z))^{`}$ has
A:-a removable singularity
B:-a simple pole
C:-an essential singularity
D:-no singular point
Correct Answer:- Option-C
Question61:-Let ` \(f(z)=(1-\cos z) /\left(z^{\wedge}(5)\right)\). Then \(f(z)\) has A:-a pole of order 3 and residue \({ }^{`}(-1) /(24)^{`}\) at \(z=0\) B:-a pole of order 5 and residue \(`(-1) /(24) `\) at \(z=0\) C:-a pole of order 3 and residue \({ }^{`}(1) /(5)^{`}\) at \(z=0\) D:-a pole of order 5 and residue ` $(1) /(5)^{`}$ at $z=0$
Correct Answer:- Option-A
$\begin{array}{r}\operatorname{Res} \\ \text { Question62:- } z=3 i\end{array} \frac{z+1}{z^{2}+9}=$
A:-` \((3+i) /(6)^{`}\)
B:- ${ }^{`}(3-i) /(6)^{`}$
C:-` \((1+3 \mathrm{i}) /(9)^{`}\)
D:-` \((1-3 \mathrm{i}) /(9)^{`}\)
Correct Answer:- Option-B
Question63:-Which of the following is false ?
A:-Every order topology is Hausdorff
B:-Subspace of a Hausdorff space is Hausdorff
C:-Every Hausdorff space is normal
D:-Product of two Hausdorff space is Hausdorff
Correct Answer:- Option-C
Question64:-Deleted comb space is
A:-connected and path connected
B:-connected but not path connected
C:-not connected but path connected
D:-neither connected nor path connected
Correct Answer:- Option-B
Question65:-Which of the following need not be a normal space ?
A:-product of two normal spaces
B:-a metrizable space
C:-a compact Hausdorff space
D:-a regular space with a countable basis
Correct Answer:- Option-A

Question66:-Which of the following is false ?
A:-the one point compactification of the real line `RR` is homeomorphic to an ellipse
B:-the one point compactification of the open interval $(0,1)$ is homeomorphic to closed interval $[0,1]$
C :-the one point compactification of the open interval $(0,1)$ is homeomorphic to the circle `\(\mathrm{S}^{\wedge}(1)\) ' D :-the one point compactification of` $\mathrm{RR} \wedge(2)$ ' is homeomorphic to the sphere ${ }^{\circ} \mathrm{S}^{\wedge}(2)$)
Correct Answer:- Option-B
Question67:-Which of the following is not a topological property ?
A:-length and area
B:-connectedness
C:-continuity
D:-compactness
Correct Answer:- Option-A
Question68:-Let d be a metric defined on `RR` by
$d(a, b)= \begin{cases}0, & \text { if } a=b \\ 1, & \text { if } a \neq b\end{cases}$
Then
A:-d is a pseudo metric on `RR`
B :- d is the usual metric on `RR`
C:-d is the Euclidean metric on `RR`
D :-d is the trivial metric on `RR`
Correct Answer:- Option-D
Question69:-Which of the following is not a basis for ` \(\mathrm{RR}^{\wedge}(3)^{`}\) ?
A:- $\{(1,1,1),(1,1,0),(1,0,0)\} `$
B:- $\{(1,1,1),(0,1,1),(1,0,0)\}^{`}$
C:- $\{(1,1,1),(0,1,1),(0,0,1)\}^{`}$
D:- $\{(1,0,0),(0,1,0),(0,0,1)\} `$
Correct Answer:- Option-B
Question70:-Let ` \(T\) : \(R^{\wedge}\) ^(3)- \(>R R^{\wedge}\) (3) \({ }^{\text {` be }}\) be map defined on ` \(R R^{\wedge}(3)^{`}\). Then which of the following is not a linear transformation ?

A:-T $(x, y, z)=(y, x, 0)$
B:-T $(x, y, z)=(x+y, y+z, z+x)$
C:-T $(x, y, z)=(x y, y z, x z)$
D:-T $(x, y, z)=(0,0,0)$
Correct Answer:- Option-C
Question71:-Let `P_(5)(x)` be the set of all real polynomials of degree `\(<=\)` 5 . Then dimension of the vector space `\(P_{-}(5)(x)\)) over` $R R^{-}$is ${ }^{\prime}{ }^{\prime}$

A:-0
B:-1
C:-5
D:-6
Correct Answer:- Option-D
Question72:-Let `\(T_{: ~ R R \wedge}\) ^(4)-> \(R^{\wedge} \wedge(5)`\) be defined by ${ }^{`} T\left(x_{-}(1), x_{-}(2), x_{-}(3), x_{-}(4)\right)=\left(x_{-}(1), x_{-}(2), x_{-}(3), x_{-}(4), 0\right) `$ Then the dimension of the null space is

A:-`n(T)=0`` B:- \({ }^{\prime} \quad n(T)=1 `\)
C:- ${ }^{\prime} ` n(T)=4 `$
D:- ${ }^{\prime}{ }^{\prime} n(T)=5 `$
Correct Answer:- Option-A
Question73:-Characteristic polynomial of `\([[1,-1,0],[0,1,-1],[-1,0,1]]\) is A:- \(\operatorname{lambda}{ }^{\wedge}(3)+3 l a m b d a \wedge(2)+3\) Lambda \(+1=0`\)
B:- $\operatorname{lambda} \wedge(3)-3 l a m b d a \wedge(2)+3$ Lambda-1=0`C:- \(\ a m b d a \wedge(3)-3 l a m b d a \wedge(2)+3\) Lambda-2 \(=0`\)
D:-`lambda^(3)-3lambda^(2)+3Lambda=0`
Correct Answer:- Option-D
Question74:-Let ${ }^{\prime} 2 x+y-z=4$ ` \(` x+3 y+2 z=1\) ` \(` 3 x+4 y+z=5\) `
The above system of equation is
A:-homogeneous and consistent

B:-nonhomogeneous and inconsistent

C :-consistant and has unique solution
D:-consistant and has infinite solution
Correct Answer:- Option-D
Question75:-Which of the following map `\(\mathrm{T}: \mathrm{RR}^{\wedge}(3)->\mathrm{RR}^{\prime}\) is a linear functional ? A:- \({ }^{-} T(x, y, z)=5`\)
B:- ${ }^{-} T(x, y, z)=x^{\wedge}(2)^{`}$
C: ${ }^{-} T(x, y, z)=-2 x+y^{`}$
D:- ${ }^{`} T(x, y, z)=x y+6{ }^{`}$
Correct Answer:- Option-C
Question76:-Let V be a vector of dimension 15 over a field F and W be a subspace of V. If $\operatorname{dim} W=3$, then $` \operatorname{dim}(V / / W)=`$ A:-3
B:-5
C:-8 D:-12
Correct Answer:- Option-D
Question77:-An `nxxn` matrix is diagonalizable if
A:-all the eigen values are real and distinct
B:-all the eigen values are real and non-negative
C:-all the eigen values are real and non-zero
D:-all the eigen values are non-zero rational numbers Correct Answer:- Option-A
Question78:-Let ${ }^{`} 1<=p<r<00^{\prime}$ and let ${ }^{x} \mathrm{x}$ inl^$(p)^{\prime}$ with ${ }^{`}\|x\|_{-}(p)<=1$. Then the inequality ${ }^{`}\|x\|(r)<=\|x\|(p)^{\prime}$ is called A:-Minkowski's inequality
B:-Jensen's inequality
C:-Cauchy's inequality D:-Bessel's inequality Correct Answer:- Option-B
Question79:-Which of the following is false ?
A:- ${ }^{`}(p)$ ' is a Hilbert space, where ${ }^{`} 1<=p<=00^{`}$
B:-Closed subspace of a Hilbert space is a Hilbert space
C:-The quotient of a Hilbert space by one of its closed subspace is again a Hilbert space
D:-A complete normed space with its norm satisfies the parallelogram law is a Hilbert space Correct Answer:- Option-A
Question80:-Let $A^{`}$ in ${ }^{`} B L(H)$ and A^{*} be the adjoint of A. A is unitary if
$A:-A A^{*}=A * A$
B:-AA* `!=` $\mathrm{A}^{*} \mathrm{~A}$
C: $-A^{*}=` A^{\wedge}(-1)^{`}$
D:-A* $=A$
Correct Answer:- Option-C
Question81:-Which of the following is not a Banach space ?
A:-Finite dimensional normed spaces

C:-`C_(00) \({ }^{`}\)
 Correct Answer:- Option-C
Question82:-Let X be an inner product space and let x, y `in` X. Then the parallelogram law is
A:- $\|x+y\|^{\wedge}(2)+\|x-y\|^{\wedge}(2)=2\left(\|x\|^{\wedge}(2)+\|y\|^{\wedge}(2)\right)^{`}$
B:- $\|x+y\|^{\wedge}(2)+\|x-y\|^{\wedge}(2)=\|x\|^{\wedge}(2)+\|y\|^{\wedge}(2)^{`}$
C:- ${ }^{-}\|x+y\|<=\|x+z\|+\|z+y\| \|^{`}$
D:-`sqrt(\(\left.\|x\|^{\wedge}(2)+\|y\| \|^{\wedge}(2)\right)<=\|x+y\|^{`}\)
Correct Answer:- Option-A
Question83:-Let X and Y be normed spaces and $F: X^{`}$->` Y be a linear map. The following conditions are equivalent except one. Which of the following is not equivalent to others?

A:- F is continuous at 0
B :- F is continuous on X
C:- ${ }^{-} \mid\|x\|<=\|F(x)\|{ }^{\prime}$, for all $x^{`}$ in ${ }^{`} X$ and some $a>0$
$D:-F$ is uniformly continuous on X
Correct Answer:- Option-C

Question84:-If a, b, c are the roots of the equation `\(x^{\wedge}(3)+p x^{\wedge}(2)+q x+r=0`\), then ${ }^{`} 1 / a+1 / b+1 / c=`$
A:- ${ }^{-}(-q) /(r)^{`}$
B:- ${ }^{-}(p) /(r)^{\prime}$
C:-` \((-p) /(r)^{`}\)
D:-`p/q`
Correct Answer:- Option-A
Question85:-The vector projection of $\bar{B}=\hat{i}+\hat{j}+\hat{k}$ onto $\bar{A}=5 \hat{j}-3 \hat{k}$ is

$\hat{i}-4 \hat{j}+4 \hat{k}$
$\frac{1}{\sqrt{3}}(5 \hat{j}-3 \hat{k})$
$\frac{1}{17}(5 \hat{j}-3 \hat{k})$
Correct Answer:- Option-D
Question86:-` \((d) /(d x) \sinh ^{\wedge}(-1)(x)=`\)
A:- ${ }^{`}(1) /\left(s q r t\left(1-x^{\wedge}(2)\right)\right)^{\prime}$
B:-`(1)/(sqrt(1+x^(2))) C:- \({ }^{-}(1) /\left(\operatorname{sqrt}\left(x^{\wedge}(2)-1\right)\right)^{\prime}\) D:-`(1)/(1+x^(2))
Correct Answer:- Option-B
Question87:-Equation of the tangent at the point ${ }^{`}\left(x_{-}(1), y_{-}(1)\right)$) on the parabola ${ }^{`} y^{\wedge}(2)=4 a x$ is
A:- ${ }^{-} y y_{-}(1)=2 a\left(x+x_{-}(1)\right){ }^{\prime}$
B:- ${ }^{-} y-y _(1)=4 a\left(x-x _(1)\right)^{`}$
C:-`y=y_(1)/x_(1)(x-2a)`
D:-y = 2ax
Correct Answer:- Option-A
Question88:-Rank of the matrix `\([[3,4,1],[-2,3,2],[5,1,-1]]`\) is
A:-0
B:-1
C:-2
D:-3
Correct Answer:- Option-C
Question89:-`lim_((x,y)->(0,0)` `((5x^(2)y)/(2x^(4)+y^(2)))=`
A:-0
B:-`5/3`
C:-`5/2`
D:-limit does not exist
Correct Answer:- Option-D
Question90:-Let $\begin{gathered} \\ f\end{gathered}(x)=x^{\wedge}(3)-12 x+9 `$. Then $f(x)$ has a local maximum at
A:-x $=0$
B:-x $=3$
C: $-x=2$
D:-x $=-2$
Correct Answer:- Option-D
Question91:-Let ${ }^{`} W=x^{\wedge}(2)+y^{\wedge}(2)^{`}, x=r-S$ and $y=r+S$. Then the partial derivative of W with respect to S is
A:-`\((\) delW \() /(d e l S)=1`\)
B:-` (delW)/(delS)=2S`
C:-` \((d e l W) /(d e l S)=4 S^{`}\)
D:-` \((\) deIW \() /(d e l S)=2 r^{`}\)
Correct Answer:- Option-C
Question92:-Solution of the differential equation ${ }^{`}\left(d^{\wedge}(2) y\right) /\left(d x^{\wedge}(2)\right)-6 d y / d x+13 y=0{ }^{`}$ is $A:-{ }^{\wedge} \mathrm{e}^{\wedge}(3 x)+B e^{\wedge}(2 x)^{\wedge}$

B:-`e^(3x)(Acos2x+Bsin2x) C:-Acos \(2 x+B \sin 2 x\) D:- \({ }^{\wedge} A x^{\wedge}(2)+B x^{\wedge}(3)^{`}\)
Correct Answer:- Option-B
Question93:-Solution of the equation `\(\left(1+2 x y+y^{\wedge}(2)\right) d x+\left(1+2 x y+x^{\wedge}(2)\right) d y=0`\) is
A: ${ }^{`} x+x^{\wedge}(2) y+x y^{\wedge}(2)+y=k `$
B:- ${ }^{`} x+2 x^{\wedge}(2) y+2 x y^{\wedge}(2)+y=k^{\wedge}$
C:- ${ }^{-} 4 x+4 y=k `$
D: ${ }^{`} 1+2 x y+x^{\wedge}(2)+y^{\wedge}(2)=k^{`}$
Correct Answer:- Option-A
Question94:-Let `\(f(x)=s u m _(n=1)^{\wedge} \operatorname{oob}_{-}(n) \operatorname{sinnx}\)` be the Fourier series of $f(x)=x$ in the interval `\([-p i\), Pi] . Then`b_(n)=` A:-0 B:- \({ }^{`}(1) /(n)^{`}\) C:- \({ }^{`}(-1)^{\wedge}(n) /\left(n^{\wedge}(2)\right)^{`}\) D:-` $\left(2(-1)^{\wedge}(n+1)^{\wedge}\right) /(n)^{`}$
Correct Answer:- Option-D
Question95:-Laplace transform of ` \(\mathrm{e}^{\wedge}\) (at)sinbt' is \(A:-{ }^{`}(s) /\left(s^{\wedge}(2)+b^{\wedge}(2)\right)^{\prime}\)
B:- ${ }^{`}(s-a) /\left((s-a)^{\wedge}(2)+b^{\wedge}(2)\right)^{\prime}$
$C:-\quad b /\left((s-a)^{\wedge}(2)+b^{\wedge}(2)\right)^{\wedge}$
$D:-` b /\left((s-a)^{\wedge}(2)-b^{\wedge}(2)\right)^{`}$
Correct Answer:- Option-C
Question96:-Two dimensional Laplace equation is
A:- ${ }^{`}\left(\operatorname{del}^{\wedge}(2) u\right) /\left(d e l t^{\wedge}(2)\right)=c^{\wedge}(2)\left(\operatorname{del}{ }^{\wedge}(2) u\right) /\left(d e l x^{\wedge}(2)\right)^{`}$
B:- ${ }^{`}\left(\operatorname{del}^{\wedge}(2) u\right) /\left(\operatorname{del} x^{\wedge}(2)\right)+\left(\operatorname{del}{ }^{\wedge}(2) u\right) /\left(\operatorname{dely}{ }^{\wedge}(2)\right)=0^{`}$
C:-` (del^(2)u)/(delx^(2))+(del^(2)u)/(dely^(2))=f(x,y)`
D:-` (delu)/(delt) \(=C^{\wedge}(2)\left(\operatorname{del}^{\wedge}(2) u\right) /\left(d e l x^{\wedge}(2)\right)^{\wedge}\) Correct Answer:- Option-B Question97:-Value of the Beta function at \({ }^{(}(1 / 2,1 / 2)^{`}\) is
A:-`beta \((1 / 2,1 / 2)=\mathrm{Pi}^{`}\)
B:-`beta(\(1 / 2,1 / 2\)) \(=\operatorname{sqrt}(\mathrm{Pi})^{`}\)
C:-`beta(\(1 / 2,1 / 2\)) \(=(\mathrm{Pi}) /(2)^{`}\)
D:-`beta \((1 / 2,1 / 2)=1\) `
Correct Answer:- Option-A
Question98:-Value of the Riemann Zeta function `zeta` (s) at $\mathrm{s}=2$ is
A:-`zeta(2)=1`
B:-`zeta(2)=2! C:-`zeta(2)=Pi/2` D:-`zeta(2)=(Pi^(2))/(6)`
Correct Answer:- Option-D
Question99:-Let $\bar{T}, \bar{N}, \bar{B}$ and k be unit tangent vector, principal unit normal vector, binormal vector and curvature respectively. Then

A: $\bar{B}=\bar{T} \times \bar{N}$
B:- $\bar{B}=\frac{1}{k} \frac{d \bar{T}}{d S}$
$\bar{B}=\frac{d \bar{N}}{d t}$
$\bar{B}=\frac{d \bar{N}}{d S} \times \frac{d \bar{T}}{d S}$
Correct Answer:- Option-A
Question100:-Let A and B be fuzzy subsets of a crisp set X. If 'mu_(A)($x)^{\prime}$ and 'mu_(B)(x) ' ' ' are the membership value of x in A and B respectively, then which of the following gives a membership value of x in `AnnB'

A:-`max\{mu_(A)(x), mu_(B)(x)\}`
$B:-{ }^{\prime} m u_{-}(A)(x)+m u_{-}(B)(x)-m u_{-}(A)(x) m u_{-}(B)(x)^{\prime}$
C:-`min \(\left\{m u_{-}(A)(x), m u _(B)(x)\right\}^{`}\)
D:-`1-mu_(A)(x)mu_(B)(x)`

Correct Answer:- Option-C

