107/2018

Question Booklet Alpha Code

Question Booklet Serial Number

101169

Total No. of Questions: 100

Maximum: 100 Marks

Time: 75 Minutes

INSTRUCTIONS TO CANDIDATES

- The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. A. B. C & D.
- The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- The Question Booklet Alpha Code allotted to you will be noted in your senting position in the Examination
 Hall
- If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your
 question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose
 the correct answer and darken the bubble corresponding to the question number using Blue or Black
 Ball-Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

107/2018-A

107/2018

Maximum: 100 Marks

Time: 1 hour and 15 minutes Who wrote the book 'Jeevithapada'? (A) K.K. Pillai (B) N. Krishna Pillai (C) Cherukad Govinda Pisharadi (D) C. Kesavan Which among the social reformer had conducted the 'Thurwal Pathy'? (A) Vaikunda Swamikal (B) Thycaud Aiya (C) Chattambi Swamikal (D) Ayyankali Which fort was known as 'Matcotai'? (A) Palakkad Fort (B) Bekkal Fort (C) St. Angelo Fort (D) Udayagiri Fort Who was known as 'Urupillai'? (A) Ayyankali (B) Vagbhadananadan (C) C.V. Kunjuraman (D) Mannath Padmanabhan 5. Who wrote the poem Jathinirnayam in 1914? (A) Changapuzha Krishna Pillai (B) Kumaranasan (C) Chattambi Swamikal (D) Sree Narayan Guru Who started the Malayalam newspaper 'Kesari'? (A) Chengulathu Kunjiraman Menon (B) Bal Gangadhar Tilak (C) A. Balakrishna Pillai (D) E.M.S. Namboodirippad The famous freedom fighter Moulana Abul Kalam Azad was born at (A) Mecca (B) Morocco (C) Lahore (D) Midnapore Who wrote the first Bengali drama, "Kulin Kulasarvarna"? 8. (A) Damodar Dutta Banerjee (B) Bankim Chandra Chatterjee (C) Pandit Ramanarayan (D) Asuthosh Mukharjee Who said Gopala Krishna Gokhale as "the practical, strenuous worker and the mystic dreamer of 9. dreams"? (A) Dr. B.R. Ambedkar (B) Sarojini Naidu (C) Jawaharlal Nehru (D) Dr. Rajendra Prasad A 3 107/2018

10. Which patiened:	
10. Which nationalist was known as 'th (A) Bal Gangadhar Tilak	e Uncrowned King of the
(A) Bal Gangadhar Tilak	(B) I dindin'?
(C) Aurobindo Ghosh	(B) Lala Lajpat Rai
11. "It can almost	(D) Bipin Chandra Pal
to be	
to be greater and more lasting than S	talin of Russia and Adolf Hitler of Germany." Who said?
(A) Albert Einstein	Russia and Adolf Hitler of Germany "Who said a
(C) Arnold Toynbec	(B) Sir Stafford Cripps Who said?
	(D) Bernard Ch
The Commonwealth Games _ 2010	the hald
(C) Brunei	(B) Gold Cost
12	(D) Sydney
13. Which South Indian State unvailed the	
13. Which South Indian State unveiled the (A) Telangana	proposed official state flag "
(C) Karnataka	(B) Tamil Nadu
	(D) Kerala
14. Win Mynt became the new president o	
(A) Vietnam	
(C) The Philippines	(B) Laos
	(D) Myanmar
15. Who said 'Books thinks for me'?	
(A) Alexander Pushkin	
(C) Charles Dickens	(B) Leo Tolstoy
	(D) Charles I and
16. Where is Oduchuttapaduka Vanya Jathii (A) Mangalavanam	Lainb
(A) Mangalawa Vanya Jathii	ka marshy land situates 2
(C) Palode	(B) Ramakalmedu
	(D) Madavi
Which is the oldest surviving Newspaper (A) Malayala Manorama	Madayi
(A) Malayala M. Newspaper	in Malayalam 2
(A) Malayala Manorama (C) Mathrubhumi	(B) Nazrani Daga 1
(~) Maurunnumi	(B) Nazrani Deepika (D) Kerala Koumudi
18. Who wrote the best	(-) Kerata Koumudi
18. Who wrote the book 'Andaman Diary'?	
L.W.S. Namboodiringd	(B) C Achutha M
(C) A.K. Antony	
19. What was the	(D) E.K. Nayanar
19. What was the real name of Jhansi Rani Lal (A) Manikarnika	(shmi Rai o
	(B) Devaneiro
(C) Kanakambha	- Crupityd
20. O-huku	(D) Devayani
20. Ozhuku records in Kerala history means	
A chipie Records	(P)
(C) Military Records	(B) Land Records
107/2018	(D) English Records

107/2018

	(A)	SO ₂ Cl ₂	(B)	CHCI ₃						
	(C)	N_2O_4	(D)	B_2H_6						
22.	The numb	er of microstates (quantur	n states) possibl	e for carbon is						
	(A)	24	(B)	20						
	(C)	15	(D)	12						
23.	Which of	the following types of spe	etroscopy is a li	ght scattering techniqu	e?					
	(A)	Electron paramagnetic r	esonance spectr	oscopy						
	(B)	Infrared spectroscopy								
	(C)	Raman spectroscopy								
	(D)	Ultraviolet-visible spect	roscopy							
24.	Which of	the following type of elec	tromagnetic rad	iations are used in ESR	spectroscopy?					
	(A)	Infrared radiation	(B)	Microwave radiation						
	(C)	Radio frequency waves	(D)	X-rays						
25.	Which of	the following vibrational	mode of carbon	dioxide is IR active?						
	I. Sym	metric stretching								
	II. Asyr	mmetric stretching								
	III. Bene									
		Lonly	(B)	III only						
	(C)	I and III only	(D)	II and III only						
26.	The kinetic energy of an electron is 11.4 eV. Its de Broglie wavelength is nearly									
		600 pm	(B)	720 pm						
	(C)	485 pm	(D)	364 pm						
27.		the following represent ge			g arachno structure?					
		$B_n H_{n+4}$		$B_n H_{n+6}$						
	(C)	B_nH_{n+10}	(D)	[B _n H _n] ²⁺¹⁰						
28.	Bond orde	r between Mo atoms in th	e complex [Mo	2(CH ₃ COO) ₄] is						
	(A)	1	(B)	2 olaro.						
	, (C)	3	(D)	4						
A			5		107/2018 [P.T.O.]					

21. Which of the following molecule belongs to C2v point group?

	(A)	H ₂ S and SO ₂	(B)	BC/, and PC/,					
	(C)	PCI ₃ and ICI ₃	(D)	CO2 and SO2					
30.	Indian Ins	titute of Chemical Technology (IIC	T) is l	ocated at					
		Hyderabad	(B)	New Delhi					
	(C)	Lucknow	(D)	Pune					
31.	Which of	the following molecular orbital have	e two	nodal planes ?					
		σ2p,	(B)						
	(C)	π*2p _y	10,000,000	σ*2p ₂					
32.	The eigen V are kine (A) (B) (C) (D)	Eigen functions of N but not of Y Eigen functions of T but not of V	erators. V	+ V) of a harmonic oscillator are (where T and respectively)					
33.	Which of the following nuclei do not show nuclear magnetic resonance?								
	(A)	¹⁹ F	(B)	13C					
	(C)	14N	(D)	160					
34.		tal involved in the sp3d hybridisati	on is						
		d_{x-y}^{2-2}	(B)	d _{vy}					
	(C)	d_{ν}^2	(D)	d _{yz}					
35.	On the bas	sis of VSEPR theory, the shape of S	SF ₄ and	1 XeF ₄ are respectively					
		See saw and tetrahedral	(B)	See saw and square planar					
	(C)	Tetrahedral and square pyramid	(D)	Tetrahedral and T shape					
36.	Transport the influen	of ions from one solution through ace of an applied electric field is ca	ion-e	xchange membranes to another solution under					
	(A)	Electrophoresis	(B)	Electrodialysis					
	(C)	Reverse osmosis	(D)	Brownian motion					
107/	2018		6	A					

29. Which of the following pair of molecules belongs to the same point group?

37.	In which o	f the following compounds, $C - O$	stretch	ing frequency is lowest?
	(A)	Acetophenone	(B)	Methyl acetate
	(C)	Acetic acid	(D)	Acetone
38.	Which of t	the following does not exist as per	MO the	eory?
L-U-I		Be_2^{2+}		O_2^{2+}
			170	B_2^{2+}
	(C)	$N_2^{2^+}$	(D)	В2
39.			rolyte	solution when the applied voltage has a very
		ency is known as	(D)	6
		Wien effect	(B)	Super conductivity
	(C)	Debye-Falkenhagen effect	(D)	Curie effect
40.	The BET	(Brunauer-Emmett-Teller) equation	is use	
	(A)	Surface area of solids	(B)	Specific conductivity of solids
	(C)	Protective action of colloids	(D)	Light scattering properties of colloids
41.	How man	y lattice points are required to repro	esent a	unit cell of NaCl?
		13	(B)	8
	(C)	16	(D)	27
42.	Pd/Cu-cat	talyzed cross-coupling of organohal	lides w	ith terminal alkynes is known as
	(A)		(B)	
	(C)	Suzuki coupling	(D)	Kumada cross-coupling
43.	Which of	the following is involved in Peterse	on olef	ination reaction?
		B-Silanol	(B)	Phosphorous ylide
	(C)		(D)	Nitrene
44.	The conv	ersion of silver carboxylate to alkyl	l or ary	l bromide by treatment with bromine is called
	(A)		(B)	
	(C)	Hunsdiecker-Borodine reaction	(D)	Houben-Hoesch reaction
45.	Number	of radial nodes for a 5d orbital is		
	(A)	2	(B)	3 Hamiltonia (A)
	(C)	1 Spinorpound	(D)	5
A			7	107/2018
				[P.T.O.]

46.	Glucose or	n reduction with sodium borohyo	dride in a	queous medium gives						
	(A)	An enantiomeric mixture	(B)	A diastereomeric mixture						
	(C)	A single enantiomer	(D)	A mixture of regioisomers						
47.	Which of	the following is an alkaloid?								
	(A)	Reserpine	(B)	Quercetin						
	(C)	Isoborneol	(D)	Tryptophan						
48.	How man	y aldols are obtained when a m	nixture of	acetaldehyde and propionaldehyde is treated						
	with cold	and dilute sodium hydroxide solu	ution?							
	(A)	3	(B)	2						
	(C)	7	(D)	4						
49.	Mond's pr	ocess is used in the refining of								
	(A)	Copper	(B)	Nickel						
	(C)	Silver	(D)	Aluminium						
50.	Which of	the following reaction can be car	ried out	with sodium borohydride ?						
	(A) Reduction of acetic acid into ethanol									
	(B) Reduction of propanone into isopropyl alcohol									
	(C) Reduction of acetamide into ethyl amine									
	(D)	(D) All the above								
51.	The cryst	al defect found in yellow form	of zine	oxide obtained by heating white zinc oxide						
	crystals in	an open vessel can be described	as							
	(A)	Schottky defect	(B)	Frenkel defect						
	(C)	Metal excess defect	(D)	Metal deficiency defect						
52.	The acid o	ontaining an alcoholic functions	al group in	n its structure is						
	(A)	Malonic acid	(B)	Crotonic acid						
	(C)	Citric acid	(D)	Pyruvic acid						
53.	The detec	tion of ions present in a solution	n on the l	pasis of electric current or a change in electric						
	current is	called as								
	(A)	Argentometry	(B)	Potentiometry						
	(C)	Voltametry	(D)	Amperometry						
107/	/2018		8	A						

54.	The elemen	nts Europiun and Gadolinium	are member	s of		
		Lanthanide series	(B)	5d transition se		
	(C)	Actinide series	(D)	4d transition se	ries	
55.	Sodium lai	uryl sulphate finds application	n as			
	(A)	Industrial solvent	(B)	Anaesthetic ag		
	(C)	Insecticide	(D)	Synthetic deter	gent	
56.	Which of t	the following complex does n	not obey the 1	8 electron rule	?	
	(A)	Potassium ferrocyanide	(B)	Potassium ferr	icyanide	
	(C)	Nickel tetracarbonyl	(D)	Ferrocene		
57.	In the Mor	nsanto acetic acid process, ac	etic acid is n	nanufactured fro	om	
		Methane	(B)	Methanol		Blaze B.
	(C)	Ethylene	(D)	Acetylene		
58.	Which of	the following amino acid is r	responsible fo	or the Hopkins-C	Cole test for proteins	?
		Tryptophan	(B)	Tyrosine		
	(C)	Cysteine	(D)	Aspartic acid		
59.	If an aqui	cous solution of potassium d	lichromate is	made alkaline	by adding sufficient will be	amount of
		Orange		Green	and the substitute of the	
	11 10 10 10 10	Yellow	(D)	Blue		
60.	The high	est oxidation state exhibited l	by elements b	pelonging to lan	thanide series is	
		+3	(B)	+8		
	(C)) +7	(D)	+4		
61		f the following divalent met g equation?	al ion have l	lowest enthalpy	of hydration represe	ented in the
	M ²⁺ (g) +	$6H_2O_{(I)} \longrightarrow [M(O_2H)_6]^{2+}$	aq)			
	(A) Ti ⁺²	(B)		ritermen	
) Fe ⁺²	(D)). Ni ⁺²		
A			9			107/2018 [P.T.O.]

63.	(A) (C) Which of (A) (C) A relation (A) (C)	nen a transition-metal free ion forms Nephelauxetic effect Jahn Teller distortion the following is the monomer of nat 2-Chloro-1, 3-butadiene 2-Methyl-1, 3-butadiene used in polarography BET equation Debye-Huckel-Onsager equation	(B) (D)	Trans effect Crystal field splitting ubber ? 1. 3-Butadiene Styrene Nernst equation
	Which of (A) (C) A relation (A) (C)	the following is the monomer of nat 2-Chloro-1, 3-butadiene 2-Methyl-1, 3-butadiene used in polarography BET equation	tural r (B) (D)	Crystal field splitting ubber ? 1. 3-Butadiene Styrene Nernst equation
	(A) (C) A relation (A) (C)	2-Chloro-1, 3-butadiene 2-Methyl-1, 3-butadiene used in polarography BET equation	(B) (D)	1. 3-Butadiene Styrene Nernst equation
64.	(C) A relation (A) (C)	2-Methyl-1, 3-butadiene used in polarography BET equation	(D) (B)	Styrene Nernst equation
64.	A relation (A) (C)	used in polarography BET equation	(B)	Nernst equation
64.	(A) (C)	BET equation		
	(C)			
		Debye-Huckel-Onsager equation	(D)	
	Rutile is a			Ilkovic equation
65.		mineral of		
	(A)	Zirconium	(B)	Titanium
	(C)	Manganese	(D)	Uranium
66.	Which of t	the following analytical methods do	es not	use an electron beam ?
,		SEM	(B)	TEM
	(C)	STEM	(D)	STM
67.	Which of t	he following is a pi-acid?		
	(A)	co	(B)	HC/
	(C)	NH ₃	(D)	BCl ₃
68.	The magne	etic moment of an ion was found to	he 4 0	R.M. The ion may be
		Co(II)	(B)	Fe(III)
		Fe(II)	(D)	Ni(II)
69.	Different s	patial arrangement of atoms or gro	up of	atoms in a molecule that are interconvertible
	by rotation	about a single bond are called		The second state are interconvertible
	(A)	Conformational isomers	(B)	Configurational isomers
	(C)	Geometrical isomers	(D)	Enantiomers
107/2	018		0	, A

70.	A compound gives a mass spectrum with peaks at $m/z = 77$ (40%), 112 (100%), 114 (33%) and essentially no other peaks. Identify the compound.								
	(A)	Chlorobenzene	(B)	Bromobenzene					
	(C)	Benzaldehyde	(D)	Acetophenone					
71.	The lowes	t energy term for the d6 co	nfiguration is						
	(A)	² D	(B)	lp .					
	(C)	¹ D	(D)	5D					
72.				d molecular ion peaks at m/z corr					
	M^{+} , $(M + $	$(2)^+$, $(M + 4)^+$ and $(M + 6)^+$		3:3:1. The compound may like	ely to contain				
	(A)	2 Br atoms		3 Cl atoms					
	(C)	3 Br atoms	(D)	2 Cl atoms					
73.	Cumene h	ydroperoxide process is us	sed in the manu	facture of					
	(A)	Nitrobenzene	(B)	Phenol					
	(C)	Chlorobenzene	(D)	Aniline					
74.	Benzene i	s nitrated with nitrating n	ixture and then	chlorinated using Cl ₂ /FeCl ₃ in the	he absence of				
	light. The			tin and HCI. The final product					
	(A)	m-Dinitrobenzene	(B)	m-Nitroaniline					
	(C)	m-Chloroaniline	(D)	m-Chlorophenyl hydrazine					
75.	Which of	the following compound i	s most basic ?						
		Pyrrole	(B)	Pyridine					
	(C)	Piperidine	(D)	Morpholine					
76.	In which	of the following reactions	a carboxylic aci	d is NOT obtained ?					
	(A)	Hydrolysis of a nitrile in	acid medium.						
	(B)	Hydrolysis of the addition	on product obta	ined from a Grignard reagent and	CO ₂ .				
	(C)	Oxidation of primary al	cohol with acid	KMnO ₄ .					
	(D)	Heating acid amide with	Br ₂ and NaOH						
77.	Benzene	diazonium chloride ean be	converted into	benzene by heating with					
	(A)		(B)	Ethanol					
	(C)	Sodium nitrite	(D)	Benzene and NaOH					
A			11		107/2018 [P.T.O.]				
			4						

78.	Picryl chi	oride can be converted into pain the above reaction is	icric acid b	by treating with boiling water. The intermediate
		Carbocation	(B)	Carbanion
		Free radical	No. of	
		- 1.09 iumoui	(D)	Benzyne
79.	The numb	per of 3c-2e bonds present in A	/(BH ₄); is	
	(A)	0	(B)	3
	(C)	6	(D)	4
80.	Which of	the following reagent is most s	suitable for	coupling an amine with a carboxylic acid?
	(A)	DCC	(B)	DDQ
	(C)	LDA	(D)	HMPA
81.	The oxida	tion number of Cr in CrO ₅ is		
		+5	(B)	+10
	(C)	+6		+4
82.	Which of	the following molecule can und	dergo both	oxidation and reduction ?
	(A)	H ₂ SO ₄	(B)	HNO ₃
	(C)	SO ₃	(D)	SO ₂
83.	Which of	the following malesute		A Committee of the Comm
0.5.	(A)	the following molecule can sho 1, 2-dimethylcyclohexanc		
	(C)	3-methyl-1-butene		2-methyl-2-pentene
	(0)	3-metryi-1-outene	(D)	3-ethyl-3-hexene
84.	Which of t	he following is a linear polymo	er of β-D-g	ducose?
	(A)	Amylose	(B)	Cellulose
	(C)	Glycogen	(D)	Amylopectin
85.	Alkyl or ar	yl boronic acids and its esters	are used in	
		Suzuki coupling	(B)	Negishi coupling
	(C)	Julia-Kocienski olefination	(D)	Hiyama coupling
86.	If the clust will be	er valence electron count in a r	netal cluste	er is 60, then the structure of metal framework
	(A)	Square	(B)	Butterfly
	- (C)	Tetrahedron	(D)	Square pyramid
107/2	2018		12	was the authorization of the beautiful
			12	A

87.	Cyclohexe	ene can be converted into 3-chl	lorocyclohe	exene by using
	(A)	PBr ₃	(B)	Solution of Br ₂ in CCl ₄
	(C)	HBr	(D)	NBS in presence of light
88.	The iodide	e induced dehalogenation of m	eso-2, 3-dib	promobutane gives
	(A)	Cis-2-butene	(B)	Trans-2-butene
	(C)	1, 3-Butadiene	(D)	1-Butene
89.	Which of	the following most readily und	ergoes elec	trophilic substitution reactions ?
	(A)	Benzene	(B)	Acetophenone
	(C)	Anisole	(D)	Nitrobenzene
90.	Which of	the following alloy contains co	pper, tin ar	nd zinc ?
	(A)	Bronze	(B)	Brass
	(C)	Solder	(D)	Gun metal
91.	Which fu organic sy		ted by usir	ng Dihydropyran (3, 4-Dihydro-2H-pyran) in
	(A)	Alcoholic OH	(B)	Aldehyde
	(C)	Nitro	(D)	Keto
92.	o-Sulphob	penzimide is used as		
	(A)	Antifungal drug	(B)	Sweetening agent
	(C)	Surfactant	(D)	Plasticizer
93.		of Chemistry who is known a lma Shri in 2018 is	as "Plastic	Man of India" and who received the civilian
	(A)	Rajagopalan Vasudevan	(B)	E.D. Jemmis
	(C)	G.N. Ramachandran	(D)	N. Krishnamurthy
94.	Which of	the following can give positive	Tollens te	st?
	(A)	Acetone	(B)	Formic acid
	(C)	Isobutyl alcohol	(D)	Acetic acid
A			13	107/2018 [P.T.O.]

95	. Matel	n L	ist – I	with l	List -	II using the	codes give	n belo	w:	
	List-I								List - II	
		Conversion of cyclohexanc-1, 2-dione to 1-hydroxycyclopentanc-1-carboxylic acid						P.	Fries rearrangement	
	 Conversion of 2-chlorocyclohep cyclohexane carboxylic acid 					procyclohep	tanone to	Q.	Favorskii rearrangement	
	3.	Co	nversi zanili	on of	benzo	phenone oxi	ime to	R.	Benzil-benzilie acid rearrangement	
	1	1112	nversion sture of ydrox	fo-hy	droxy	l acetate into acetopheno	ne and	S.	Beckmann rearrangement	
			1.	2	3	4				
	. (4	4)	R	S	P	0				
	(1	B)	S	R	р	Q				
	((.)	R	Q	S	P				
	(I))	S	Q	P	R		7		
96,			n of a by trea Swe				omyr unnine	is car		e
	w	2)		s oxid		The St			penauer oxidation	
		-)	Jone	S. OXIO	anon		(D)	Core	ey-Kim oxidation	
97.	Which o	of t	he fol	lowing	g have	lowest pKa	1?			
	(A	1)	2-Flu	ioroet	hanoi	acid	(B)	2-C	yanoethanoic acid	
	(C)	2-Ch	loroet	hanoi	e acid	(D)		itroethanoic acid	
98.	Sanger's	s re	agent	is						
	(A	.)	Phen				(B)	2.4-	Dinitrofluorobenzene	
	(C)	2. 4-I	Dinitro	phen	yl hydrazine	(D)		ethyl zinc (II)	
99.	Alkylide	ne	triphe	nyl pl	nosph	oranes are ca	alled			
	(A)	Edma	n's re	agent		(B)	Gilm	nan's reagent	
	(C)	Wittig	g reag	ent		(D)		kland's reagent	
100.	Addition	of	enola	te ion	toac	onjugated ca	arbonyl con	anoun	d is called	
	(A))	Tische	enko's	react	ion	(B)	Diele	-Alder reaction	
	(C)		Canni	zaro's	react	ion			ael addition	
107/2	018						14	-		
							1000		A	
	2346									