36/2019

Maximum: 100 marks Time: 1 hour and 15 minutes 1. Babur wrote his autobiography, 'Tuzuki-Babari' is ——— – language. (A) Persian (B) Arabic (D) Turkish (C) Pushto 2. The key note of Asoka's policy of 'Dhamma' was: (A) self control (B) kindness (C) moderation (D) charity At which of the following places was the Revolt of 1857 particularly encouraged by Moulavis 3. and Pandits alike? (A) Assam (B) Bihar (C) Bengal (D) Rajasthan Mahathma Gandhi gave the title of 'Sardar' to Vallabai Patel for his great organisational 4. skill is: (A) Bardoli Satyagraha Kheda Satyagraha (B) Individual Satyagraha (C) Salt Satyagraha (D) **5.** In which state in India was "Panchayathi Raj" first introduced? Kerala Andhra pradesh (A) (B) (C) UP (D) Rajasthan 6. Which of the following is not included in "Aintinai" prevailed in ancient Tamilakam? (A) Kurunji (B) Karai (C) Palai (D) Mullai 7. Number of signaturies in 'Malayali Memorial': (A) 10028 (B) 10128

8. Who is the author of the book, "Enmakaje" portrays the life of the victims of Endosulfan pesticides in Kasargod?

3

(D)

(A) C.V. Balakrishnan

(C)

10228

(B) Subash Chandran

10328

(C) Ambikasutan Mangad

(D) Santhosh Eachikkanam

A

9.	Mambura	m Thangal came to Kerala from:		
	(A)	Yemen	(B)	Saudi Arabia
	(C)	Syria	(D)	Egypt
10.	Who is th	e author of 'Viswa darshanam'?		
	(A)	Vallathol Narayana Menon	(B)	G. Sankara Kurup
	(C)	Kumaran Asan	(D)	Ulloor S. Parameswara Iyer
11.	Who start	ed Panthibhojanam (Inter-dining) in	Kerala?	
	(A)	Sri Narayana Guru	(B)	Sahodaran Ayyappan
	(C)	Thycaud Ayya	(D)	Dr. Palpu
12.	Who start	ted the newspaper 'Mithavadi'?		
	(A)	Mohamed Abdurahiman Sahib	(B)	Moorkoth Kumaran
	(C)	K.P. Kesava Menon	(D)	C. Krishnan
13.	Expand V	VPAT:		
	(A)	Voter Verifiable Paper Audit Trial		
	(B)	Voter Verifiable Personal Audit Tri	ial	
	(C)	Voter Verifiable Permanent Audit	Γrial	
	(D)	Voter Verifiable Personal Account	Trial	
14.	Right to I	nformation Bill passed by the parlian	ment on :	
	(A)	$12^{ m th}$ June 2005	(B)	$15^{ m th}$ June 2005
	(C)	22^{nd} June 2005	(D)	12 th October 2005
15.	The fund Amendme	amental duties of the citizens werent.	re added	to the constitution by
	(A)	$40^{ m th}$ Amendment	(B)	41st Amendment
	(C)	42 nd Amendment	(D)	43 rd Amendment
16.	Who is th	e director of the film, "A.K.G. Athi Je	eevanath	inte Kanal Vazhikal"?
	(A)	Priyanandanan	(B)	Lenin Rajendran
	(C)	P.T. Kunhi mohamed	(D)	Shaji. N. Karun
17.	Who was	the founder of 'Swadeshabhimani' No	ewspapeı	c?
	(A)	Vakkom Abdul Kader Moulavi	(B)	Ramakrishna Pillai
	(C)	E. Moidu Moulavi	(D)	K.M. Moulavi Sahib

36/2019 4 A

18.	Who is the founder of "Antharjana Samajam"?						
	(A)	Arya Pallam	(B)	A.V. Kutty Malu Amma			
	(C)	Lalithambika Antharjanam	(D)	Parvathi Nenmeni Mangalam			
19.	Who is th	e author of 'Mathilukal'?					
	(A)	M.T. Vasudevan Nair	(B)	N.P. Mohamed			
	(C)	Vaikom Mohamed Basheer	(D)	Perumbadavam Sreedharan			
20.	Who wrot	e, 'Anukambadasakam'?					
	(A)	Sankaracharya	(B)	Sri Narayana Guru			
	(C)	Sukumar Azhikode	(D)	Nithya Chaithanya Yathi			
21.		orces acting at a point are in equilibr ween the other two. This statement i		h force is proportional to the sine of the			
	(A)	Converse of the Law of Triangle of	forces				
	(B)	Lamie's Theorem					
	(C)	Law of Triangle of forces					
	(D)	None of these					
22.	When a b	ody is about to slide down, the inclin	ation of t	the plane to the horizontal is:			
	(A)	Equal to the angle of friction	(B)	More than the angle of friction			
	(C)	Less than the angle of friction	(D)	None of these			
23.	The ratio	of shear stress to shear strain is call	led :				
	(A)	Young's modulus	(B)	Bulk Modulus			
	(C)	Modulus of rigidity	(D)	Modulus of elasticity			
24.		se of stress strain curve for mild stee sing without an appreciable load, the		en conducted a tensile test, strain goes orresponding to this is:			
	(A)	Ultimate stress	(B)	Fracture stress			
	(C)	Nominal stress	(D)	Yield stress			
25.		supported beam of length 'L' is han value of bending acting at the center		oint load 'W' acting at the center, the			
	(A)	$\mathrm{WL}^2/4$	(B)	WL/4			
	(C)	WL/2	(D)	$\mathrm{WL}^2/8$			
A		-		20/2010			

26.	The maxin	The maximum strain energy stored per unit volume at elastic limit is:						
	(A)	Stiffness	(B)	Modulus of resilience				
	(C)	Resilience	(D)	Proof resilience				
27.	For a solid rectangular column the slenderness ratio is:							
	(A)	(A) Height of column/Maximum width of the column						
	(B)) Length of the column/Height of the column						
	(C)	Height of column/Least side of column	nn					
	(D)	None of these						
28.	Under tors	sion, every section of the shaft is subj	ected to);				
	(A)	Tensile stress	(B)	Shear stress				
	(C)	Compressive stress	(D)	Normal stress				
29.	Find the power transmitted by a solid shaft of diameter 0.1 m, rotating at a speed of 100 rpm. The maximum permissible stress is 100 N/m^2 . Torque developed is 5 Nm :							
	(A)	52.33 W	(B)	5.23W				
	(C)	$0.52~\mathrm{kW}$	(D)	523.3W				
30.	The internal resistance of a body to external forces/loads that the body is subjected to is called:							
	(A)	Load	(B)	Pressure				
	(C)	Strain	(D)	Stress				
31.	The coefficient of viscosity is expressed as:							
	(A)	N/m^2	(B)	m^2/s				
	(C)	Stoke	(D)	$ m N~s/m^2$				
32.	When mer why?	rcury is spilled over a smooth horizo	ontal su	rface, it tends to gather in to droplets				
	(A)							
	(B) Adhesive force is more than cohesive force							
	(C)	Both cohesion and adhesion are equ	al					
	(D)	Mercury is a metal						
33.	Convert a 10 kN/m ³	pressure of 1.5 bar into meters of	water.	Take the specific weight of water as				
	(A)	1.5 m	(B)	15 m				
	(C)	150 m	(D)	0.66 m				

34.	Kaplan turbine is an example for:					
	(A)	Tangential flow	(B)	Radial flow		
	(C)	Mixed flow	(D)	Axial flow		
35.	For a nor	mal runner Francis turbine, the specifi	c spee	d is in the range of :		
	(A)	25 - 30	(B)	250 - 850		
	(C)	100 - 150	(D)	250 - 400		
36.	The power	r developed by a jet of water with a flo	w rate	of 40 m³/s from a height of 200 m is:		
	(A)	78.48 MW	(B)	7.85 MW		
	(C)	$0.785~\mathrm{MW}$	(D)	784.8 MW		
37.	The ideal		o pow	er station to avoid water hammer in		
	(A)	Very near to the reservoir				
	(B)	Very near to the power station				
	(C)	Midpoint of the penstock				
	(D)	At the junction of the tunnel and pen	stock			
38.	What type of pump is preferred for pumping drainage water?					
	(A)	Plunger pump	(B)	Centrifugal pump		
	(C)	Jet pump	(D)	Diaphragm pump		
39.	When cen	trifugal pumps are connected in parall	el:			
	(A)	Discharge increases	(B)	Total head increases		
	(C)	Discharge decreases	(D)	Total head decreases		
40.	The veloc	ity of flow in a pipe line can be measur	ed by :			
	(A)	Piezometer	(B)	Rotameter		
	(C)	Pitot tube	(D)	Orifice meter		
41.	A system	in which there is no interaction betwee	en syst	tem and its surroundings is:		
	(A)	Closed system	(B)	Open system		
	(C)	Ideal system	(D)	Isolated system		
42.	The coord	inates to describe the state of a system	ı is cal	led:		
	(A)	Cycle	(B)	Property		
	(C)	Path	(D)	Process		

43.	In the absence of any unbalanced force within the system itself and also between the system and surroundings, the system is said to be in:				
	(A)	Thermal equilibrium	(B)	Chemical equilibrium	
	(C)	Mechanical equilibrium	(D)	Thermodynamic equilibrium	
44.	Latent he	eat of sublimation is the amoun	t of heat trans	ferred to convert a unit mass from:	
	(A)	Vapour to liquid	(B)	Solid to vapour	
	(C)	Liquid to vapour	(D)	Vapour to solid	
45.	A fluid is	been throttled though a valve	itted in an ins	ulated pipe, what remains constant?	
	(A)	Pressure	(B)	Internal energy	
	(C)	Enthalpy	(D)	Entropy	
46.	_			in a cycle, will produce no effect other. Who proposed this statement?	
	(A)	Clausius	(B)	Kelvin - Plank	
	(C)	Carnot	(D)	J.P. Joule	
47.	The part	of the low grade energy which,	according to se	econd law must be rejected is:	
	(A)	Available energy	(B)	Gibb's free energy	
	(C)	Exergy	(D)	Anergy	
48.	The regi	on inside the inversion curve w	here Joule - K	elvin coefficient is positive :	
	(A)	Cooling region	(B)	Heating region	
	(C)	Unchanged region	(D)	Both (B) and (C)	
49.	_			dealized, to reduce any system to the rations. This statement corresponds to:	
	(A)	Zeroth law	(B)	Third law	
	(C)	First law	(D)	Second law	
50.	A process	always occurs in such a direct	on to cause th	e entropy of the universe :	
	(A)	Remains same	(B)	Decreases	
	(C)	Increases	(D)	Unpredictable	
51.	In a Face is:	e Centered Cubic (FCC) struct	are the effectiv	ve number of lattice points in unit cell	
	(A)	2	(B)	4	
	(C)	1	(D)	3	

What property of materials is used to make wire by drawing it out through a hole?				
(A)	Elasticity	(B)	Plasticity	
(C)	Malleability	(D)	Ductility	
What is tl	he crystal structure of gold?			
(A)	Body centered cubic	(B)	Face centered cubic	
(C)	Hexagonal closed packed structure	(D)	None of these	
(A)	Fermi gas	(B)	Phonons	
(C)	Meissner effect	(D)	None of these	
An ion dis	splaced from a regular site to an interst	titial s	rite is called :	
(A)	Schottky imperfection	(B)	Frenkel imperfection	
(C)	Dislocation	(D)	Twinning	
In a phase	e diagram, alloy compositions to the lef	t of th	e eutectic mixture are called :	
(A)	Hypereutectic alloys	(B)	Peritectic alloy	
(C)	Eutectic alloy	(D)	Hypoeutectic alloy	
Fe-C alloy	ys with more than 2 % carbon are called	d:		
(A)	Cast irons	(B)	Alloy steels	
(C)	High carbon steels	(D)	Stainless steels	
=	-	ture a	bove the critical point and quenched in	
(A)	Normalising	(B)	Annealing	
(C)	Hardening	(D)	Tempering	
		al wea	akly magnetized in a direction opposite,	
(A)	Paramagnetic	(B)	Diamagnetic	
(C)	Ferrimagnetic	(D)	Ferromagnetic	
Which is	the most suited material for the fabrica	ition o	f boiler riser tubes?	
(A)	Alloy steel	(B)	Carbon steel	
(C)	Mild steel	(D)	High carbon steel	
	(A) (C) What is the (A) (C) In the free are free to (A) (C) An ion dis (A) (C) In a phase (A) (C) Fe-C alloy (A) (C) A process oil or wat (A) (C) The properto the ext (A) (C) Which is a (A)	(A) Elasticity (C) Malleability What is the crystal structure of gold? (A) Body centered cubic (C) Hexagonal closed packed structure In the free electron model, the outermost electror are free to move through the whole solid. These electron is a common to the electron are free to move through the whole solid. These electron is a common to the electron is a commo	(A) Elasticity (D) (C) Malleability (D) What is the crystal structure of gold? (A) Body centered cubic (B) (C) Hexagonal closed packed structure (D) In the free electron model, the outermost electrons of are free to move through the whole solid. These electrons of are free to move through the whole solid. These electrons of are free to move through the whole solid. These electrons of are free to move through the whole solid. These electrons of are free to move through the whole solid. These electrons of are free to move through the whole solid. These electrons (B) (C) Meissner effect (D) An ion displaced from a regular site to an interstitial set (A) Schottky imperfection (B) (C) Dislocation (D) In a phase diagram, alloy compositions to the left of the (A) Hypereutectic alloys (B) (C) Eutectic alloy (D) Fe-C alloys with more than 2 % carbon are called: (A) Cast irons (B) (C) High carbon steels (D) A process in which steel is heated to a temperature at oil or water is known as: (A) Normalising (B) (C) Hardening (D) The property of a material by which the material weat to the external magnetic field: (A) Paramagnetic (B) (C) Ferrimagnetic (D) Which is the most suited material for the fabrication of (A) Alloy steel (B)	

0.010	2019		10	Α			
	(C)	Peclet number	(D)	Mach number			
	(A)	Prandtl number	(B)	Reynolds number			
6 8.	Which dir	nension less number ha	s a significant role in	forced convection?			
	(C)	1.5	(D)	0.25			
	(A)	0.375	(B)	0.6			
67.	respective	ely. Then the sensible h	eat factor is:	eat load are 50 kJ/sec and 30 kJ/sec			
a=			` ,				
	(A)	0.0226	(B)	0.0216 0.0126			
66.	100 kPa a 2 kPa res		T 20°C and the corres	e given air which is under a pressure of sponding saturation pressure 5 kPa and			
	(C)	3, 1	(D)	1, 3			
	, ,	5, 1	(B)	5, 2			
65.	A refrigerating machine working on Reversed Carnot Cycle takes 3 kW from a space with temperature 150 K. What is the power required to run the system in kW and the COP, if the heat is rejected at 300 K?						
	(C)	40%	(D)	50%			
	(A)	80%	(B)	30%			
64.	_	ut of a gas turbine is 8 the heat supplied are 5	_	e thermal efficiency, if the compressor kg respectively?			
	(C)	$1 + C - C(P_2 / P_1)^{n-1}$	(D)	$1 + C - C(P_2 / P_1)^{1/n}$			
	(A)	$1 - C - C(P_2/P_1)^n$	(B)	$1 - C + C(P_2 / P_1)^n$ $1 + C - C(P_2 / P_1)^{1/n}$			
63.	The relat	ion for volumetric effic	ciency of a reciprocat	ing compressor with clearance volume			
	(C)	50%	(D)	80%			
	(A)	66.7%	(B)	76.7%			
62.		The mechanical efficiency of a 60 kW engine is 80%. What is the mechanical efficiency at 50% of rated load, if the frictional power is assumed as constant with load?					
	(C)	348°C, 184 bar	(D)	409°C, 165 bar			
	(A)	375°C, 225 bar	(B)	323°C, 252 bar			
61.		al temperature and pre					

69.	What is doubled?	the increase in energy radiat	ed, when the	surface temperature of the solid is
	(A)	50%	(B)	200%
	(C)	1600%	(D)	2000%
70.		and outlet temperatures of hot spectively. What is the capacity		d in a heat exchanger is 200, 170 and eat exchanger?
	(A)	0.5	(B)	1.5
	(C)	0.25	(D)	0.3
71.	Which of	the following is not the inversion	n of a double s	lider crank mechanism?
	(A)	Scotch-yoke mechanism		
	(B)	Whitworth quick return mech	anism	
	(C)	Elliptical trammel		
	(D)	Oldham's coupling		
72.		tle of two numbers of 20° full d ne centre distance between the §	-	profiled gears which are in mesh is 5. amber of teeth are 20 and 40?
	(A)	150	(B)	200
	(C)	300	(D)	100
73.		he maximum pressure in N/m² 20mm, when the axial force is 4	_	utch, with inner and outer radii of 60 ne uniform wear.
	(A)	0.176	(B)	0.1176
	(C)	0.076	(D)	0.126
74.		r velocity of a flat belt is 6 m/s. slack side are 1000 N and 500 N	-	ower transmitted, if the tension on the
	(A)	9 kW	(B)	5 kW
	(C)	3 kW	(D)	6 kW
75.	_	d of an engine changes from n of speed?	400 to 420 i	n a cycle. What is the coefficient of
	(A)	0.5	(B)	0.048
	(C)	0.05	(D)	0.041
76.				vernor in N/cm having the lowest and ctively, if the height of the governor is
	(A)	500	(B)	450
	(C)	900	(D)	1100
A			11	36/2019

[P.T.O.]

77.	The number of masses rotating in different planes will be in dynamic balance if:						
	(A)	Net force equal to zero					
	(B)	Resultant couple equal to zero					
	(C)	Both force and resultant couple equal to zero					
	(D)	None of these					
78.	•	shaft overhangs on a bearing like a o s reduced to half of its original mass,		er carrying a flywheel. If the mass of a eeling speed will be :			
	(A)	Half of the speed	(B)	Double the speed			
	(C)	$\sqrt{2}$ times the speed	(D)	$1/\sqrt{2}$ times the speed			
79.		permissible twisting moment in a be its value according to maximum		shaft as per maximum stress theory. stress theory?			
	(A)	T	(B)	T/2			
	(C)	$\sqrt{2}T$	(D)	2T			
80.	The thick	ness of the strap in single strap butt	joint to j	oin two plates of thickness t is:			
	(A)	1.125 t	(B)	$\sqrt{2} t$			
	(C)	$0.75\ t$	(D)	1.5 t			
81.	Loam san	d is mixture of :					
	(A)	60% sand and $40%$ clay	(B)	70% sand and 30% clay			
	(C)	40% sand and 60% clay	(D)	50% sand and 50% clay			
82.	Filler material is used in:						
	(A)	Spot welding	(B)	Seam welding			
	(C)	Gas welding	(D)	Projection welding			
83.	Spinning is a process comprising:						
	(A)	Bending and drawing					
	(B)	Bending and rolling					
	(C)	Stretching and rolling					
	(D)	Bending and stretching					
84.	The best of	extrusion method for high-strength s	uper allo	ys:			
	(A)	Hydrostatic extrusion	(B)	Indirect extrusion			
	(C)	Direct extrusion	(D)	Impact extrusion			

85. Discontinuous chips in metal cutting operations are produced in machining			oduced in machining :	
	(A)	Ductile material	(B)	Brittle material
	(C)	Hand material	(D)	Soft material
86.	pieces car piece to l	n be produced within one tool life,	if the leng	speed of 0.5 m/s is 1000 sec. How many gth and diameters of the portion of the cively? Feed and speed of cutting are
	(A)	25	(B)	30
	(C)	12.5	(D)	10
87.		rning operation, corresponding to costs min and 300 min respectively. W	~ -	eds of 30 m/min and 15 m/min, the tool Taylorian exponent?
	(A)	0.5	(B)	0.6
	(C)	0.2	(D)	0.1
88.	The stand	lard tapes used for drill spindle is	:	
	(A)	Sellers taper	(B)	Morse taper
	(C)	Chapman tapers	(D)	Brown and sharper taper
89.	The twist	drill is specified by:		
	(A)	Shank, material, diameter	(B)	Shank, material, lip angle
	(C)	Shank, flute size, diameter	(D)	Diameter flute size, lip angle
90.	Auto-colli	mator is used to check:		
	(A)	Roughness	(B)	Flatness
	(C)	Parallelism	(D)	Angle
91.	Which on	e of the following types of layout is	used for ve	ehicle manufacturing?
	(A)	Product layout	(B)	Process layout
	(C)	Group layout	(D)	Fixed position layout
92.	Standard	time is obtained from normal time	by adding	the policy allowance and :
	(A)	Personal and fatigue allowance		
	(B)	Personal delay allowance		
	(C)	Delay allowance and fatigue allo	wance	
	(D)	Personal, fatigue and delay allow	ance	

93.	ABC anal	ysis is used in :		
	(A)	Job analysis	(B)	Production schedule
	(C)	Inventory control	(D)	Cost analysis
94.		the expected time in PERT activity ic time are 10, 12 and 16 minutes respe	-	otimistic time, most likely time and y?
	(A)	12.66	(B)	12.33
	(C)	12	(D)	12.99
95.	Which on	e is a qualitative technique of demand f	orecas	sting?
	(A)	Delphi technique	(B)	Regression analysis
	(C)	Exponential smoothing	(D)	Time series analysis
96.		and and forecast for April are 10,000 t is 0.25, forecast for May using single e		1 8000 respectively. If the smoothing ential smoothing method:
	(A)	10500	(B)	9500
	(C)	11000	(D)	8500
97.	Which of	the following would lead to interchange	abilit	y?
	(A)	Product design	(B)	Process planning
	(C)	Operation planning	(D)	Quality control
98.	Which of	the following is not a control chart used	in sta	atistical quality control?
	(A)	X-chart	(B)	P-chart
	(C)	SIMO chart	(D)	R-chart
99.		the realiability of a system when its $70.7, 0.6$ and 0.9 ?	subs	ystems are put in series and having
	(A)	0.61	(B)	0.73
	(C)	0.37	(D)	0.35
100.	Simplex r	nethod of solving linear programming p	robler	ms uses :
	(A)	All the points in the feasible region		
	(B)	Only the corner points of the feasible:	region	1
	(C)	Intermediate points within the non-fe	asible	region
	(D)	Interior points in the feasible region		

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK