068/2019

Question Booklet Alpha Code

A	

Question Booklet Serial Number

Total Number of Questions: 100	Time: 75 Minutes
	Maximum Marks: 100

INSTRUCTIONS TO CANDIDATES

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. **A**, **B**, **C** & **D**.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

068/2019

1.	In h	In high carbon steel, carbon contain:											
	(A)	Below 0.25%	(B)	0.25 to 0.8	8%	(C)	0.8 to 1.5%	(D)	1.5 to 2.5%				
2.	Whi	ch has the highe	st pero	centage of i	ron?								
	(A)	Magnetite	(B)	Hematite		(C)	Limonite	(D)	Iron pyrite				
3.	Hot	working of meta	ıl does	not:									
	(A)	Eliminate poro	sity		(B)	Ach	ieve close tolera	nce					
	(C)	Improve mecha	anical	properties	(D)	Refi	ne grain structu	re					
4.	An a	alloy of solder co	ntains	:									
	(A)	Tin and Coppe	r		(B)	Tin	and Lead						
	(C)	Lead and Copp	er		(D)	Non	e of these						
5.	Lip a	angle of twist dri	ll for 1	mild steel sh	ould l	oe:							
	(A)	108°	(B)	118°		(C)	128°	(D)	126°				
6.		ging shop tool rations is called :	used 1	for mainly	squa	ring,	sizing, heading	g, bend	ling and forming				
	(A)	Flatter	(B)	Fuller		(C)	Swage	(D)	Swage block				
7.	Galv	anizing is gener	ally do	one on :									
	(A)	Cast iron			(B)	Stair	ıless steel						
	(C)	Low carbon ste	eel		(D)	Non	-ferrous metal						
8.	Tool	l used for finishii	ng cori	ners in shou	ıldered	l wor	κ:						
	(A)	Chisel	(B)	Swage		(C)	Set hammer	(D)	Drift				
A					3								

{P.T.O.}

9.	Whi	ch of the follow:	ing is a	permanen	t faste	ning ?				
	(A)	Rivets	(B)	Bolts		(C)	Screw	(D)	Keys	
10.	Flux	is used for braz	ing:							
	(A)	Ammonium cl	nloride		(B)	Zinc	chloride			
	(C)	Rosin			(D)	Bora	ıx			
11.	An a	allen bolt is :								
	(A)	Self locking bo	lt		(B)	Prov	rided with hexag	onal d	epression in head	
	(C)	Same as stud			(D)	Used	d in high speed c	compoi	nents	
12.	Whi	ch of the followi	ing is n	ot a forging	g oper	ation	?			
	(A)	Extrusion	(B)	Fullering		(C)	Swaging	(D)	Edging	
13.	Cup	ola used to proc	luce :							
	(A)	Pig iron	(B)	Wrought	iron	(C)	Cast iron	(D)	Carbon free	
14.	The	function of coke	in a b	last furnace	is to :					
	(A)	Production of	heat		(B)	Act	as a reducing ag	ent		
	(C)	Act as a space	r in bos	sh region	(D)	All o	of the above			
15.	The	included angle i	in Acm	e thread is	:					
	(A)	60°	(B)	55°		(C)	46°	(D)	29°	
16.	An a	alloy of Nickel a	nd Cor	pper is calle	d :					
	(A)	Monel	(B)	Gun meta		(C)	Muntz metal	(D)	German silver	
17.	M/h;	ch of the follow	ina cor	otains tha la	act no	rconto	uga of carbon 2			
17.	(A)	Pig iron	(B)	Wrought	•	(C)	O .	(D)	Malleable iron	
	(11)	118 11011	(D)	mougni	11011	()	Cust Holl	(D)	Mancable Holl	
18.	The	unit of mass in S	SI units	is:						
	(A)	Kilogram	(B)	Gram		(C)	Tonne	(D)	Quintal	
068/2019					4				A	

19.	me	distance between	the C	entre or two	COLIS	ecunv	e fiveis in the s	anne rov	w is called.
	(A)	Lead	(B)	Lap		(C)	Pitch	(D)	Clearance
20.	Tens	sile test is used for	1:						
	(A)	Ductile materia	l		(B)	Hard	d material		
	(C)	Brittle material			(D)	Non	e of these		
21.	The calle		aterial	l which retu	arns t	o its o	original position	n after i	removal of load is
	(A)	Plasticity	(B)	Elasticity		(C)	Ductility	(D)	Malleability
22.	Pre-	heating is essentia	al for	welding :					
	(A)	Cast iron			(B)	High	n speed steel		
	(C)	Mild steel			(D)	Non	e of these		
23.	The	process extensive	ly use	ed for makir	ng bol	ts and	nuts is :		
	(A)	Cold peening	(B)	Hot pierci	ng	(C)	Extrusion	(D)	Cold heading
24.	Forg	ing temperature	of pla	in carbon st	eel is	:			
	(A)	700°C	(B)	600°C		(C)	900°C	(D)	1300°C
25.		process which im	ıprove	es the mach	inabili	ity of	steels, but lowe	r the ha	ardness and tensile
	(A)	Spheroidising			(B)	Nor	malizing		
	(C)	Full annealing			(D)	Proc	ess annealing		
26.	The	object of caulking	g in a	riveted join	t is to	make	the joint :		
	(A)	Free from corro	sion		(B)	Leak	x-proof		
	(C)	Free from stress	es		(D)	Stro	nger in tension		
A					5				068/2019

27.	A small selected portion of the job can be hardened by :										
	(A)	Flame and indu	ction	hardening	(B)	Pack	hardening				
	(C)	Cyaniding			(D)	Nitri	ding				
28.	Coin	ing is the operati	on of	:							
	(A)	Cold forging	(B)	Hot forgin	g	(C)	Cold extrusion	(D)	Piercing		
29.	Whi	ch of the followin	g is a	direct comp	oressio	on pro	ocess?				
	(A)	Bending	(B)	Extrusion		(C)	Stretch forming	(D)	Forging		
30.	Perc	entage of Silver in	n Geri	nan Silver :							
	(A)	5%	(B)	10%		(C)	25%	(D)	None of these		
31.	Chie	f source of Sulph	ur in	the blast fur	nace	charge	e is :				
	(A)	Iron ore	(B)	Coke		(C)	Flux	(D)	Sinter		
32.	Mild	l steel belongs to	the fo	llowing cate	gory :						
	(A)	Medium carbon	steel		(B)	High	n carbon steel				
	(C)	Low carbon stee	el		(D)	Alloy steel					
33.	Haro	dness of a materia	al dete	ermines, the	resist	ance o	of materials to :				
	(A)	Scratching			(B)	Wea	r and indentatior	ı			
	(C)	Machinability			(D)	All c	of the above				
34.	Upse	etting is the proce	ess of	:							
	(A)	Bending	(B)	Forging		(C)	Extrusion	(D)	Rolling		
35.	Mair	n constituents of 1	olast f	urnace slag	are :						
	(A)	SiO ₂ , FeO , CaO)		(B)	SiO ₂	, CaO, Al ₂ O ₃				
	(C)	CaO, MgO, SiO	2		(D)	SiO ₂	, Al ₂ O ₃ , MgO				

36.	Corr	osion resistance o	of stee	l is increase	d by a	adding	g:			
	(A)	Chromium and	Nicke	el	(B)	Alur	ninium and Zii	nc		
	(C)	Tungsten and S	Sulphu	ır	(D)	All	of the above			
37.	A st	eel containing 0.8	3% car	bon is knov	vn as	:				
	(A)	Eutectoid steel			(B)	Нур	er-eutectoid ste	eel		
	(C)	Hypo-eutectoid	steel		(D)	Non	e of these			
38.	Whi	ch of the followir	ng ma	terials cann o	ot be f	forged	?			
	(A)	Medium carbon	steel		(B)	Mild	steel			
	(C)	Wrought iron			(D)	Cast	iron			
39.	Flatt	er is a tool used f	or:							
	(A)	Striking			(B)	Pun	ching			
	(C)	Finishing the su	ırface		(D)	Holo	ling the job			
40.	Case	e hardening is the	only	method sui	table 1	for:				
	(A)	High speed stee	1		(B)	Low	carbon steel			
	(C)	High alloy steel			(D)	High	n carbon steel			
41.	Incre	ease in hardness (of met	als due to it	ts cold	l work	king is termed a	as:		
	(A)	Induction harde	ening		(B)	Age	hardening			
	(C)	Work hardening	g		(D)	Flan	ne hardening			
42.	Hea	ting the steel abo	ve up	per critical t	empe	rature	and then coolin	ng in aiı	is the process	of:
	(A)	Annealing	(B)	Normalizi	ng	(C)	Tempering	(D)	Hardening	
43.	Melt	ting point of pure	iron i	ds:						
	(A)	1259°C	(B)	1379°C		(C)	1539°C	(D)	1739°C	
A					7				068/2	.019

{P.T.O.}

44 .	Tool	steel should be f	irst ha	ardened and	l then	:			
	(A)	Tempered	(B)	Normalize	ed	(C)	Annealed	(D)	Cooled
45.	Cold	l chisels are made	by th	ne process o	f :				
	(A)	Piercing	(B)	Drawing		(C)	Forging	(D)	Rolling
46.	Mate	erial which is bes	t suite	ed for forge	weldi	ng is :			
	(A)	Cast iron			(B)	Stair	nless steel		
	(C)	High speed stee	1		(D)	Wro	ught iron		
47.	Diffe	erence between u	pper a	and lower li	mit of	a din	nension is called	:	
	(A)	Nominal size	(B)	Basic size		(C)	Actual size	(D)	Tolerance
48.	Tool	used for necking	dow	n operations	s:				
	(A)	Fuller	(B)	Flatter		(C)	Swage	(D)	Chisel
49.	Hacl	ksaw blade is spe	cified	by its:					
	(A)	Material	(B)	Length		(C)	Width	(D)	Number of teeth
50.	Melt	ing point of Tin i	s:						
	(A)	116°C	(B)	232°C		(C)	685°C	(D)	850°C
51.	Ano	ther name of odd	-leg c	aliper is :					
	(A)	Inside caliper	J	-	(B)	Outs	side caliper		
	(C)	Spring caliper			(D)	Heri	naphrodite calip	per	
52.	The	material generall	v used	d for aircraft	t com	ponen	ts is :		
	(A)	Mild steel	,		(B)	-	n speed steel		
	(C)	Stainless steel			(D)	Ü	ninium		

53.	Whi	ch is an ore of Zi	nc?							
	(A)	Calamine	(B)	Galena		(C)	Azurite	(D)	Cerussite	
54.	_	ging operations, ngth:	the o	cross-sectio	nal a	rea of	bar is increa	sed du	e to its reduc	tion
	(A)	Swaging	(B)	Upsetting		(C)	Drawing	(D)	Edging	
55.	Low	carbon steel can	be ha	rdened by:						
	(A)	Heating and qu	enchi	ng in water	(B)	Heat	ing and quencl	ning in	oil	
	(C)	Carburising and	l cyar	niding	(D)	Non	e of these			
56.	Hot	tear is a :								
	(A)	Heat treatment	proce	SS	(B)	Fabr	ication process			
	(C)	Casting defect			(D)	Non	e of the above			
57.	Acet	ylene gas is gene	rated	from:						
	(A)	Calcium			(B)	Calc	ium carbide			
	(C)	Carbon			(D)	Calc	ium carbonate			
58.	Gun	metal is an alloy	of:							
	(A)	Nickel, Tin and	Copp	er	(B)	Cop	per, Tin and Zi	nc		
	(C)	Copper, Phosph	orus	and Nickel	(D)	Man	ganese, Phosph	norus ar	nd Nickel	
59.	A fe	eler gauge is used	l for c	hecking:						
	(A)	Screw pitch			(B)	Radi	us			
	(C)	Surface roughne	ess		(D)	Thic	kness of cleara	nce		
60.	Cros	s-section of chise	l are န	generally:						
	(A)	Square	(B)	Circular		(C)	Hexagonal	(D)	Octagonal	
61.	Whi	ch of the followin	ıg gas	es are used :	in TIC	G weld	ling ?			
	(A)	Helium and Ne	on		(B)	Hyd	rogen and Oxy	gen		
	(C)	Argon and Heli	um		(D)	Carb	on dioxide and	l Hydro	gen	

62.	Whi	ich of the part of an anvil is used for making hole on metal?									
	(A)	Face	(B)	Beak		(C)	Tail	(D)	Punch hole		
63.	Max	imum hardenabil	ity of	steel depen	ds on	its:					
	(A)	Chemical comp	ositio	n	(B)	Carl	oon content				
	(C)	Grain size			(D)	All	of the above				
64.	Whi	ch of the followir	ng ma	terial has th	e higł	nest h	ardness ?				
	(A)	Cast iron	(B)	Steel		(C)	Silicon carbide	(D)	Copper		
65.	Give	en the following i	s not a	a heat treatr	ment p	oroces	s:				
	(A)	Parkerising	(B)	Cyaniding	7	(C)	Austempering	(D)	Martempering		
66.	The	material for draw	n into	o wire shou	ld hav	ve hig	h :				
	(A)	Stiffness	(B)	Toughness	S	(C)	Ductility	(D)	Hardness		
67.	Cop	per melts at :									
		812°C	(B)	918°C		(C)	1083°C	(D)	1145°C		
68.	The	cutting angle of c	hisel 1	for cutting r	nild st	teel sh	ould be :				
	(A)	28°	(B)	30°		(C)	55°	(D)	60°		
69.	Case	e hardening cann e	ot be	done by :							
	(A)	Electroplating			(B)	Cya	niding				
	(C)	Induction hard	ening		(D)	Nitr	iding				
70.	Chis	els used for cutti	ng key	wavs is :							
-•	(A)	Flat chisel	0)	- y ·	(B)	Rou	nd nose chisel				
	(C)	Cape chisel			(D)		e of these				
068/	068/2019								Α		

71.	1. The instrument used to measure thickness of parts, internal and external diameter and depth of holes, is :										
	(A)	Inside microme	ter		(B)	Outs	side micrometer	•			
	(C)	Depth gauge			(D)	Verr	nier caliper				
72.	Forg	ing is accomplish	ed in	drop forgin	ig by (dropp	ing the :				
	(A)	Hammer at high	n velo	city							
	(B)	Weight on ham	mer to	o produce tl	he req	uired	impact				
	(C)	Die with hamm	er at l	high velocit	y						
	(D)	Work piece at h	igh ve	elocity							
73.	A co	ld chisel is made	of:								
	(A)	High carbon steel				Milc	l steel				
	(C) High speed steel				(D)	Cast iron					
74.	Han	nmer is made by :									
	(A)	Cast iron	(B)	Wrought	iron	(C)	Mild steel	(D)	High carbon steel		
75.	The	material for cons	structi	on of bearin	ng is :						
	(A)	Mild steel	(B)	Babbit me	tal	(C)	Pig iron	(D)	Steel		
76.	Wro	ught iron is :									
	(A)	Hard			(B)	Higl	n in strength				
	(C)	Highly resistant	to co	rrosion	(D)	Leas	st resistant to co	rrosion			
77.	Pure	iron is the struct	ure of	f :							
	(A)	Ferrite	(B)	Pearlite		(C)	Austenite	(D)	Cementite		
78.	Abil	ity of material ab	sorbir	ng large amo	ount c	of enei	rgy before fractı	ıre is kr	nown as :		
	(A)	Ductility	(B)	Toughness	s	(C)	Plasticity	(D)	Hardness		
A							068/2019				

{P.T.O.}

79.	Young's modulus may be defined as the ratio of:									
	(A)	Linear stress to	latera	l strain	(B)	Late	ral strain to linea	r strai	in	
	(C)	Linear stress to	linear	strain	(D)	Shea	r stress to shear	strain		
80.	The	tool used for inte	ernal t	hread maki	ng :					
	(A)	Тар	(B)	Dies		(C)	Punch	(D)	Drift	
81.	Mild	l steel is used for	makir	ng:						
	(A)	Die block	(B)	Hammer		(C)	Hacksaw blade	(D)	Channels	
82.	Mac	hining properties	of ste	el is improv	ved by	addi	ng :			
	(A)	Sulphur, Lead a	and P	hosphorus	(B)	Silicon, Aluminium and Titanium				
	(C)	Vanadium, Alu	ıminiv	ım	(D)	Chro	omium, Nickel			
83.	Steel	l possess the max	imum	ductility by	y:					
	(A)	Quenching	(B)	Annealing	5	(C)	Carburising	(D)	Hardening	
84.	The	railway carriage	coupl	ings have :						
	(A)	Square thread	(B)	Acme thre	ead	(C)	Knuckle thread	(D)	Buttress thread	
85.	The	test specimen is 1	measu	red in the c	reep t	est :				
	(A)	Deformation in	volur	ne	(B)	Defo	ormation in lengt	h		
	(C)	Deformation in	widtl	ı	(D)	Non	e of these			
86.	Blast	t furnace produce	es:							
	(A)	Wrought iron	(B)	Cast iron		(C)	Pig iron	(D)	Steel	
87.		process in which	n carb	on and niti	rogen	both	are absorbed by	the m	netal surface to g	et
	(A)	A) Carburising				Cya	niding			
(C) Flame hardening					(D)	Indu	action hardening			
068/	2019				12					A

88.	Age hardening is connected with the :										
	(A)	Gun metal	(B)	Stainless	steel	(C)	Duralumin	(D)	Babbit r	netal	
89.	Swa	ge block is mad	e of :								
	(A)	(A) High speed steel			(B)	Tool					
	(C)	High carbon s		(D)	Cast	iron					
90.	The usual value of the helix angle of drill is:										
	(A)	10°	(B)	20°		(C)	30°	(D)	45°		
91.	Point angle of centre punch is :										
	(A)	30°	(B)	45°		(C)	55°	(D)	90°		
92.	Nan	ne of the cutting	tool fi	xed on an a	anvil :						
	(A)	Hot set	(B)	Hardie		(C)	Cold set	(D)	Chisel		
93.	The minimum amount of carbon in gray cast iron is:										
	(A)	0.5%	(B)	0.8%		(C)	1.5%	(D)	2.5%		
94.	Steel pipes are normally manufactured by :										
	(A)	Extrusion			(B)	Cold					
	(C)	Forging			(D)	Elec	troforming				
95.	Drills are usually made of :										
	(A)	Mild steel			(B)	High	n speed steel				
	(C)	Alloy steel			(D)	High	n carbon steel				
96.	Chisel used for removing surplus metal in cotter ways and slots is called:										
	(A)	Flat chisel			(B)	Half	round chisel				
	(C)	Cross-cut chis	el		(D)	Side	chisel				
A					13				(068/201	

97.	Bronze is an alloy of Copper and :									
	(A)	Lead	(B)	Zinc		(C)	Tin	(D)	Nickel	
98.	Depth of hardness of steel is increased by addition of :									
	(A)	Nickel	(B)	Chromium		(C)	Tungsten	(D)	Vanadium	
99.	The compression test is carried on:									
	(A)	Ductile material		(E	3)	Brittl	e material			
	(C)	Malleable mater	ial	(I	D)	Plast	ic material			
100.	In engineering drawing, visible outlines are represented by:									
	(A)	Continuous thic	k	(E	3)	Cont	inuous thin			
	(C)	Dashed thin		(I	D)	Dash	ed thick			
	- o O o -									

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK