010/2020

(C)

(A)

W

will be:

1.

2.

Maximum: 100 marks

and Poisson's ratio respectively, then which of the following is correct:

 $E = 2 N (1 - \mu)$

 $N=2E(1-\mu)$

For a given material if 'E', 'N', and μ are the Youngs modulus, Modulus of rigidity

A simply supported beam of span 'L' units is subjected to two concentrated loads of 'W' kN acting at 'L/4' from both ends. The shear force at the mid point of the beam

(B) $E = 2N(1 + \mu)$ (D) $E = 2N/(1 - \mu)$

(B) W/2

Time: 1 hour and 15 minutes

	(\mathbf{C})	Z W	(D)	U
3.			. The maximu	m, it is subjected to a uniformly am bending stress will occur at:
4.	free end. depth 'd' maximum (A)	The cross section of the k	beam is recta lasticity of the nding stress is (B)	a concentrated load of 'W' kN at the ingular with breadth 'b' units and a beam material is 'E', the ratio of s: $L^2/6 Ed$ $L^2/48 Ed$
5.	will be t		g load of ano	h both ends hinged is 100 kN, what ther column made with the same ooth ends fixed : 400 kN 25 kN
6.	relations! (A)	erfect truss having 'm' menip is correct: m=2j-3 m=j+3	(B)	"j" joints. Which of the following $ m = 2j + 3 $ $ m < 2j - 3 $
A			3	IP.T.O.1

010/	2020		4	Α	
	(C)	rill erosion	(D)	gully erosion	
13.	Removal (A)	of soil from rivulets by con sheet erosion	ncentrated over (B)	land flow is known as : channel erosion	
	(C)	0.99 m/s	(D)	1.22 m/s	
	(A)	1.07 m/s	(B)	0.039 m/s	
		f = 0.04 for the complete p			
				above the inlet of the pipe is 4.88 m, considerates all the lossess is,	
12.		_		lenly expands to 0.3 m at the end of	
	(C)	Albedo	(D)	Bowen's ratio	
	(A)	Radiation coefficient	(B)	Absorption coefficient	
11.	The ratio		.ck by a surfac	e to the radiation received by it is	
	(C)	rj = 2 dj	(D)	rj = -1.5 dj	
		rj = -dj/2		rj = dj	
	(dj) and rotation factor (rj) used in Kani's method is:				
10.	The relationship between distribution factor used in moment distribution method				
	(C)	2 M	(D)	-M/2	
	(A)			M/2	
9.		oment 'M' is applied to the moment at the fixed end o	=	prismatic propped cantilever beam	
0	, ,				
		When the tail end of the	- -	eft end of the beam	
		When the point divides t When the load is central		ame ratio as it divides the span	
		Equally placed about the	=		
		en the load is :			
8.				n the span is traversing a simply mum value of bending moment will	
	(C)	$H = w L^2 / 16 h$	(D)	$H = w L^2 / 2 h$	
		$H = w L^2 / 4 h$		$H = wL^2/8h$	
		ise 'h/2' units. The horizon			
	intensity 'w' kN per unit horizontal length. The span of the arch is 'L' units and the				
7.	For a parabolic three hinged arch subjected to a uniformly distributed load of				

A		5		010/2020 [P.T.O.]
22.	A 50 m ta (A) (C)	ape is held 2.5 m out of line. What 49.74 49.94	is the t (B) (D)	rue length? 49.84 50.04
	(A) (C)	505.04 m 505.24 m	(B) (D)	505.14 m 505.34 m
21.	_			was found to be 504.4 m. It was ong, then the true length of the line
20.		ng curve of a stream gauging statio the area of the flow the velocity of flow	(B)	the variation of discharge : the stage the depth of flow
19.		acting reciprocating pump has a pleed of the pump is 60 rpm and Cd i 6.8575 l/s 9.143 l/s		dia 0.3 m and a stroke length 0.4 m. actual discharge of the pump is : 27.43 l/s 30.48 l/s
18.	level is (A) (C)	surcharge storage bank storage	(B) (D)	rvoir level and maximum reservoir live storage useful storage
10	` ,		` '	
	(A) (C)	1 mm 1.428 mm	(B) (D)	0.008 mm 0.0183 mm
17.		ead sphere of specific gravity 11.5 pecific gravity 1.25 and dynamic vi		terminal fall velocity of 7 mm/S in a 7.848 poise :
16.	For natural (A) (C)	ral stream channels, the value of N between 0 and 0.3 more than 0.5	lusking (B) (D)	gum parameter will generally : between 0.3 and 0.6 more than 1.0
	long will (A) (C)	it take for the level at the sill to fa 6.91 hrs. 10.37 hrs.	ll from (B) (D)	0.6 m to 0.3 m: 3.112 hrs. 2.305 hrs.
15.	A reserve	oir has an area of $8.5 \times 10^4 \mathrm{m}^2$ and	l is pro	ovided with a weir 4.5 m long. How
	(A) (C)	0.079 m ³ /S	(D)	0.316 m ³ /S
14.		harge through a triangular notch the notch is 120° and Cd, 0.62 is : $0.132~\mathrm{m}^3/\mathrm{S}$	under (B)	c a constant head of 0.25 m if the $0.006~\mathrm{m}^3/\mathrm{S}$

23.	to an irre 5.91 (All	egular shaped boundary line : 2.52,	4.56, the a	t 10 m intervals from a survey line 6.82, 2.82, 5.89, 4.82, 8.27, 7.12 and re a (in m ²) enclosed between the
	(A)		(B)	
	` '	$425.6~\mathrm{m}^2$	` /	435.6 m^2
24.	Choose t	he oddman out from the following:		
	(A)	Radiation method	(B)	Two point problem
	(C)	Three point problem	(D)	Height of collimation method
25.		stance between two points is 20 k e and refraction (in metres) is:	m, th	en the combined correction due to
		6.92	(B)	16.92
	(C)	26.92	(D)	36.92
26.	The valu	e of a property at the end of the util	ity pe	riod without being dismantled is:
	(A)	Scrap value	(B)	Rateable value
	(C)	Salvage value	(D)	Market value
27.	Annual d	lepreciation of the property (using d	eclini	
	(A)	$D = \left(1 - \frac{S}{C}\right)^n$	(B)	$D = \left[1 - \left(\frac{S}{C}\right)^{1/n}\right]$
	(C)	$D = \left(1 - \frac{C}{S}\right)^n$	(D)	$D = \left[1 - \left(\frac{C}{S}\right)^{1/n}\right]$
28.	IS Code	1200 (Methods of measurement of	build	ling and Civil engineering works):
	Part I de	als with:		
	(A)	Earthwork	(B)	Concrete work
	(C)	Brick work	(D)	Stone Masonry
29.	A proper	ty fetches a net annual income of	Rs. 9	00/- deducting all outgoings. If the
	rate of in	terest is 5% per annum, then the ca	ıpitali	sed value of the property is :
	(A)	Rs. 16,000/-	(B)	Rs. 18,000/-
	(C)	Rs. 20,000/-	(D)	Rs. 22,000/-
30.		units are the quantities for the fram		
	(A)	m	(B)	m^2
	(C)	m^3	(D)	None of these

31.	Grade of	Cement refers to:		
	(A)	Particle size	(B)	Order of grinding
	(C)	Soundness	(D)	Compressive strength
32.	Seasonin	g of timber is done to :		
	(A)	reduce the weight of timber		
	(B)	reduce the chances of shrinkage		
	(C)	increase the strength and durabili-	ty	
	(D)	all the above		
33.	In half tu	urn Stairs, change in direction is thr	ough	:
	(A)	110°	(B)	180°
	(C)	90°	(D)	45°
34.	Fineness	of Cement is measured in units of:		
	(A)	Volume / Mass	(B)	Mass / Volume
	(C)	Area / Mass	(D)	Mass / Area
35.		·	-	imistic time, Most likely time and
		tic time are 5,8 and 17 weeks respec	-	•
	` ′	8 weeks	(B)	9 weeks
	(C)	10 weeks	(D)	15 weeks
36.	The most	popular type of contract in Govern	ment	departments is:
	(A)	Item rate	(B)	Cost plus percentage
	(C)	Lump sum	(D)	Cost plus fixed fee
37 .	Silica fur	ne is considered as a :		
	(A)	Chemical admixture	(B)	Mineral admixture
	(C)	Colouring admixture	(D)	Cleaning admixture
38.	The porti	ion of a wall on which the end of an	arch	rests is known as :
	(A)	Abutment	(B)	Lintel
	(C)	Soffit	(D)	Nosing
39.	Whon no	rcentage of mica present in sand is l	aigh	;+·
00.	(A)	increases the strength of mortar or		
	(B)	reduces the strength of mortar or		
	(C)	has no effect on the strength of mo		
	(D)	enhances the strength of mortar or		
	(D)	emiances the strength of mortar of	COLIC	rete siightiy
40.		g" of a project is :		
	(A)	reduction in project size	(B)	reduction in resource
	(C)	reduction in cost	(D)	reduction in duration

41.	(A) Co	e following tests in the following factor low test		(B)	ining the workability of concrete? Blaine's test Vee-bee consistometer test
42.	(A) in (B) in (C) de	statement which creases the yield creases the ducti ecreases the percesults in residual	strength ility entage elongatio	_	ess of cold working of steel :
43.	(A) Ri	eral load resistin igid frames rame-Shear wall		(B)	or a building of 100 storeys is: Framed tubes Diagrid system
44.	(A) E	rmwork is called levator caffolding	:	(B) (D)	Slipform Shuttering
	(A) In co (B) In (C) In ce (D) In	ontribute to high acreasing the fine acreasing dicalcive ement acreasing dicalciv	eium silicate (Cearly strength of eness of cement rum silicate (C ₂ S)	f cemeresult retar	and tricalcium aluminate (C ₃ A) ent is in high compressive strength eds early development of strength of rates more heat of hydration al cycles of repeated loads is called:
	(A) Fa	atigue failure rittle fracture			Buckling failure Flexural failure
47.	E. Soft sF. ShearG. JackeH. Trans(A) E-	ting	P. Retrofitting Q. Vulnerable R. Provides lar S. Lateral load	to earge co resis (B)	arthquake lumn-free space in the lower storey
48.	interfering v (A) ea	of time by wh with the start of our arliest start time ee float			activity may be delayed without y is called: latest start time latest finish time

49 .	Which is not true?			
	(A)	PERT is used in research and deve	lopm	ent projects
	(B)	PERT is activity oriented		
	(C)	Project duration estimate using PE		
	(D)	PERT is used for projects which are	e non	repetitive in nature
50 .	Choose th	ne correct statement :		
	(A)		itract	tor while submitting the tender is
	,	called security deposit		<u> </u>
	(B)	Earnest Money Deposit (EMD) ha	s to 1	be deposited only by the contractor
	(0)	whose tender is accepted by the cli		
	(C)	_	uses	to take up the work, his EMD will
	(D)	be forfeited by the client	30.00	ntractor soon after completing the
	(D)	project	ie co	intractor soon after completing the
		project		
51.		eatment process is carried out after		
	` '	Sedimentation	` '	Disinfection
	(C)	Coagulation	(D)	Flocculation
52.	Populatio	on forecasting method hest suited wh	nen ti	he growth rate is having decreasing
J	-	the city is heading towards saturat		ne growin rate is naving decreasing
		Arithmetic		Geometric
	(C)	Graphical	(D)	Decreased rate of growth
53.	Movimum	n detention period of a clarifier used	in w	cator treatment is:
<i>ა</i> ა.		3 hr		1 hr
	(C)	4 hr	(D)	5 hr
	(0)		(2)	
54.		acteristic feature of a Centrifugal pu		
	(A)	variable	(B)	constant
	(C)	continuous	(D)	uniform
55.	Which of	the gas is not produced in the sewer	?	
		$ m H_2S$	(B)	CH_4
	(C)	CO_2	(D)	HCl
56.	The degic	gn period for the design of a water su	ınnlı	project is generally taken as:
50.	_	less than 10 years	(B)	20-30 years
	(C)	50 years	(D)	100 years
	` ,	•	` '	•
57.			inspe	ection and permits cleaning of sewer
	line is kn		(D)	. 1.
	(A)	manhole	(B)	inlet
	(C)	catch basin	(D)	vent pipe

9

 \mathbf{A}

010/2020

[P.T.O.]

58.	Mention (A) (C)	the last stage in sludge treatment p thickening drying	roces (B) (D)	s : dewatering digestion
59.	_	nic loading in an activated sludge pl Volume of aeration tank/Mass of B Mass of BOD per day/Volume of th Aeration period × Volume of aerat The mass of BOD per day/Volume	OD p e aer ion ta	er day ation tank ank
60.	The Air ((A) (C)	Prevention and Control of Pollution 1991 1974	(B) (D)	was enacted in the year : 2000 1981
61.	The max (A) (C)	imum area of tension reinforcement 0.15% 4%	in co (B) (D)	ncrete beams shall not exceed : 2% 1.5%
62.	Cantileve (A) (C)	er retaining walls can safely be used 4 m 6 m	for a (B) (D)	height not more than: 5 m 8 m
63.	(A)	sloss due to friction occurs: Only in post-tensioned beams Only in pre-tensioned beams In both post-tensioned and pre-ten None of above	sione	ed beams
64.	To ensure (A) (B) (C) (D)	e uniform pressure distribution, the Kept uniform throughout Increased gradually towards the ed Decreased gradually towards the e Kept zero at the edge	dge	xness of the foundation, is :
65.	The mini (A) (B) (C) (D)	mum clear cover for R.C.C. columns Greater of 40 mm or diameter of ba Smaller of 40 mm or diameter of ba Greater of 25 mm or diameter of ba Smaller of 25 mm or diameter of ba	ars ars	l be :
66.	In a simp (A) (C)	oly supported slab, alternate bars ar $1/4^{ m th}$ of the span $1/7^{ m th}$ of the span	e cur (B) (D)	tailed at : 1/5 th of the span 1/6 th of the span

67.	The pitch depth by		orted	slab, should not exceed its effective
	(A)		(B)	Four times
	(C)	Five times	(D)	Six times
68.	Spacing (A)	of stirrups in a rectangular beam, is Kept constant throughout the leng	th	
	(B) (C)	Decreased towards the centre of th Increased at the ends	e bea	.m
	` '	Increased at the centre of the beam	ı	
69.		may be made of plain concrete if the tateral dimensions:	heir u	unsupported length does not exceed
	(A)	2 times	(B)	3 times
	(C)	4 times	(D)	5 times
70.	The maxidirection,		b sin	nply supported and spanning in one
	(A)	35	(B)	25
	(C)	30	(D)	20
71.	Compress	sion failure of simply supported bear	m occ	eurs in :
	_	Balanced section	(B)	Over reinforced section
	(C)	Under reinforced section	(D)	None of above
72.	shrinkag		erect	cluding the effects due to creep, ion of partitions and application of sed to:
	(A)	Span/150	(B)	Span/200
	(C)	Span/250	(D)	Span/350
73.		g to IS $-456~2000$ maximum spaceno case shall not exceed:	ing o	of shear reinforcement for concrete
	(A)	250 mm	(B)	300 mm
	(C)	350 mm	(D)	450 mm
74.	In the he	el slab of a cantilever retaining wall	, mai	n reinforcement is provided at:
	(A)	Bottom of slab	(B)	Top of slab
	(C)	Centre of slab	(D)	Sides of slab
75 .	The shrir	nkage in a concrete slab :		
	(A)	Causes shear cracks	(B)	Causes tension cracks
	(C)	Causes compression cracks	(D)	Does not cause any cracking

76.	In a reint (A) (B) (C) (D)	forced concrete retaining wall, a she Shear stress in vertical stem is ex- Shear force in toe slab is more tha Retaining wall is not safe against Retaining wall is not safe against	cessiv n hee slidin	e l slab g
77.	The actual (A) (C)	al thickness of butt weld as compar More Equal	ed to t (B) (D)	the thickness of a plate is usually: Less None of the above
78.	Which or (A) (C)	ne of these defects in timber is due t Knot Split	(B) (D)	ural forces? Stain Bow
79.	In a unifo (A) (B) (C) (D)	Parabolic with convexity downward Parabolic with convexity upward		ectangular beam should be :
80.	For cylin (A) (B) (C) (D)	drical tanks fixed at the base: Bending moment and hoop tension Only hoop tension will be develope Only bending moment will be deve None of the above	ed	-
81.	which is	_		more than half the coarse fraction smaller than 4.75 mm IS Sieve is Sand
82.		will occur through the total cross s	ection (B)	Silt is defined as the average velocity of all area of soil under Unit hydraulic Coefficient of percolation Coefficient of transmissibility
83.	In which (A) (B) (C) (D)	pressure If it has never been subjected to a overburden pressure If it is not fully consolidated under	ure is n effe r exist	equal to the existing overburden

84.	sliding in (A)	case of Swedish Circle Method for ϕ —circle	stabil (B)	Friction circle
	(C)	Critical slip circle	(D)	Mohr's circle
85.		e earth pressure behind a retaining of The soil mass is semi-infinite, how The ground surface is a plane Shearing stress between the wall a	wall? logeno and th	•
86.	 Which among the following is called net safe bearing capacity? (A) Safe bearing capacity divided by factor of safety (B) Net ultimate bearing capacity divided by factor of safety (C) Ultimate bearing capacity plus original overburden pressure (D) Safe bearing capacity plus original overburden pressure 			
87.	Which pr (A) (C)	rocedure is used for getting undistur Chunk sampling Cone Penetration test	bed s (B) (D)	amples from soil? Standard Penetration test Auger boring
88.	(A) (B)	the cause of negative skin friction? Pile driving Rising of ground water table Upward movement of surrounding Downward movement of surroundi	_	
89.	(A)	the following can be considered as a Direct Shear Test Unconfined Compression Test		l test? Triaxial Shear Test Vane Shear Test
90.	 What for a Proctor needle is used? (A) To determine the water content at which the soil is compacted (B) To determine optimum moisture content (C) To determine zero air voids line (D) To determine saturation line 			
91.	The mini (A) (C)	mum coefficient of lateral friction fo 1.0 0.3	or a hi (B) (D)	ighway is 0.5 0.15
92.	Grade co. (A) (C)	mpensation on curves is a minimum $55/\mathrm{R}$ $100/\mathrm{R}$	of: (B) (D)	75/R 150/R
A		13		010/2020 [P.T.O.]

93.	Traffic de	ensity is:		
	(A) (B)	No. of vehicles passing a point in a No. of vehicles passing a point in a	a spec	ific direction per hour
	(C) (D)	Maximum no. of vehicles passing No. of vehicles occupied per unit le	_	-
94.		cionship between speed and density	is ger	
	(A) (C)	Linear No relation	(B) (D)	Parabolic Asymptotic to both axes
95.	and temp			having been corrected for elevation he rate of —————————————— for every 1%
		10%	(B)	20%
	(C)	7%	(D)	15%
96.	-	lensity is :		
	` ,	No. of sleepers per km length		
	, ,	No. of sleepers per rail length		
	` ′	Density of material of sleeper	-	_
	(D)	Minimum distance between any tr	wo adj	acent sleepers
97.	_	super elevation in railways arises		
	(A) (C)	Main and loop lines Similar flexure	(B) (D)	Transition curves Contrary flexure
98.		e constructed in tunneling operationent, to gain information about the		advance of the main drivage, along and is called:
	(A)	Shaft	(B)	Tunnel invert
	(C)	Tunnel soffit	(D)	Pilot tunnel
99.			and l	perthing structures in the mooring
	process is		(-)	
	(A)	Breakwaters	(B)	Fenders
	(C)	Dolphins	(D)	Piers
100.		ation model proposed by E.W. Burge		
	(A)	Sector Model	(B)	Multiple Nuclei model
	(C)	Concentric zone model	(D)	Peripheral model

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK