Total Number of Questions: 24

Time: 2.00 Hours

Max. Marks: 100

1. Prove: Characteristic of a field F is 0 then F is infinite.

(3 Marks)

2. Explain: Is every field F has an infinite extension of F.

(3 Marks)

3. Find the value of the improper integral

(3 Marks)

$$\int\limits_{1}^{\infty}\frac{1}{t^{p}}\,dt \text{ for }p\in\mathbb{R}.$$

4. What is the cardinality of the set of all complex functions f(z) = u(x, y) + i v(x, y), z = x + iy such that u is a harmonic conjugate of v and v is a harmonic conjugate of u? Justify.

(3 Marks)

Find the remainder when 6ⁿ⁺² + 7²ⁿ⁺¹ is divided by 43.

(3 Marks)

6. Prove: The center of the set of all n × n matrices over a field F is isomorphic to F.

(4 Marks)

7. Find the number of similarity classes of idempotent matrices of order n over a field F. Explain your answer.

(4 Marks)

8. Prove: S_s is not solvable.

(4 Marks)

9. Check whether the following sequence of functions $g_n(x) = \frac{1}{n(1+x^2)}$ converges uniformly or diverges on \mathbb{R} .

(4 Marks)

10. Find the points on \mathbb{R}^2 where the directional derivative of the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = \sqrt{x^2 + y^2}$ exists. Also find the directional derivative(s) if it exists.

(4 Marks)

11. Let f(z) be an entire function and M is a constant such that for a positive real number R and for an integer $n \ge 1 \left| f(z) \right| \le M |z|^n$ for |z| > R. Prove that f(z) is a polynomial of degree less than or equal to n.

(4 Marks)

12. Let X be a normed linear space, $S = \{x \in X/||x|| \le 1\}$ and f be a map from S into $\mathbb R$ such that $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ for all x, $y \in S$ and $\alpha x + \beta y \in S$ where α and β are scalars. Is there is an extension for f to all of X? Justify.

(4 Marks)

13. Let X, Y, Z be topological space. If $f: X \to Y$ and $g: Y \to Z$ are continuous then show that $g \circ f: X \to Z$ is continuous.

(4 Marks)

14. A metric space X is connected iff every continuous function $f: X \to \{0, 1\}$ is not onto.

(4 Marks)

15. Prove or disprove if A and C are connected subsets of a metric space X and if $A \subseteq B \subseteq C$ then B is connected.

(4 Marks)