Total Number of Questions: 27

Time	: 2.00 Hours		Max. Marks: 100
1.	A point is chosen at random inside a circle. Find the probability that the point is more clearent of the circle than the circumference of the circle.		
2.	Show that Binomial distribution belongs to the exponential family of distributions.		(3 Marks)
3.	In order to test whether rejected if and only if mo	perfectness is error. (3 Marks)	
A.	Give the layouts of a 4 ×	4 Latin square design with the treatments A, B, C and D.	(3 Marks)
5.	Define Binomial distribut	(3 Marks)	
6.	Examine whether f(x) = {	$ \begin{cases} x, & 0 < x < 1 \\ 2-x, & 1 \le x \le 2 \\ 0, & \text{otherwise is a p.d.f.} \end{cases} $	(3 Marks)
7.	Define Hotelling's T²-stati	istics.	(3 Marks)
8.	What is the difference be	(3 Marks)	
9.	S. T. sample variance is a	(3 Marks)	
10.	Explain the problem of auto-correlation in general regression model.		
11.	Define quadratic form.		
12.	Define the following: i) Matrix ii) Identify the following:		
	ii) Idempotent matrixiii) Rank of a matrix.		
13.	. Define transition probability matrix.		
14.	. State Ergodic theorem.		

15. If X is a random variable with mean α , show that the value of $E(X-t)^2$ is minimum when $t=\alpha$. (4 Marks)

16. Let X₁, X₂, X_n be a random sample from a population having uniform distribution in the interval $\left(\mu - \sqrt{3}\,\sigma,\, \mu + \sqrt{3}\,\sigma\right)$. Find the estimators of μ and σ by the method of moments. (4 Marks)

17. Given H_0 : Median = 5. Compute T^* , T^- and T for the following observations : 6, 10, 3, 5, 2, 12 (4 Marks)

18. Define Weibull distribution. Find its mean and variance. (4 Marks) P.T.O.

19. Define χ2, t and F distributions.

(4 Marks)

Describe spectral decomposition of a symmetric matrix.

(4 Marks)

- 21. State Cayley Hamilton theorem. Also using Cayley Hamilton theorem, compute A⁻¹ in terms of powers of A. (4 Marks)
 - 22. Let \overline{X}_n be the mean of a random sample of size n from a population with mean μ and variance σ^2 . Show that \overline{X}_n converges stochastically to μ , if σ^2 is finite. (5 Marks)
 - 23. Derive the confidence interval for the difference of means of two normal populations, based on small samples of sizes n₁ and n₂ taken from the populations by assuming the variances of the populations are same. (5 Marks)
- 24. Let X have the distribution $f(x, \lambda) = \lambda^x (1 \lambda)^{1-x}$; x = 0, 1; $0 < \lambda < 1$. Construct the SPRT for testing $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1$. (5 Marks)
- 25. For a resolvable BIBD with parameters v, b, r, k and λ , show that $b \ge v + r 1$. (5 Marks)
- 26. a) Define joint, marginal and conditional p.d.f. of multivariate distributions.
 - b) What is lack of memory property ? Give discrete and continuous distributions having lack of memory property.
 - c) Define multivariate normal distribution.

(5 Marks)

27. In the general linear model $\underline{Y} = X\underline{\beta} + \underline{U}$, with usual notations and if \underline{U} follows $N_n(\underline{0}, \sigma^2, I_n)$, derive an unbiased estimator for σ^2 . (5 Marks)