

Total Number of Questions: 32

Time: 3.00 Hours Max. Marks: 200

- 1. Expand  $e^{x+\left(\frac{1}{2}\right)}$  in powers of x 1. (2 Marks)
- 2. Differentiate  $\int_{1}^{x^3} \cos t dt$  with respect to 'x'. (2 Marks)
- If the normals at two points of the parabola y² = 4x intersect on the curve, find the product of the ordinates of the two points.
   (2 Marks)
- 4. A straight line and a conic are described in polar forms as  $\frac{l}{r} = 3\cos\theta + \sin\theta$  and  $\frac{l}{r} = 1 + e\cos\theta$  respectively. If the line touches the conic at some point, find the eccentricity 'e' and identify the conic. (2 Marks)
- 5. Find the values of log ( 1) and log (– 1). (2 Marks)
- 6. A particle moving along the curve C has an instantaneous velocity  $8 \csc^2 t$ . Obtain the path C described by the particle, given that it passes through the point  $\left(\frac{\pi}{4}, 0\right)$ . (4 Marks)
- 7. Compute the area between the curve  $y = \sin 2x$  and the x-axis from x = 0 to  $x = 2\pi$ . (4 Marks)
- 8. Evaluate  $\int_{0}^{\sqrt{\pi}} \int_{x^2}^{\pi} \frac{\sin y}{\sqrt{y}} \, dy dx.$  (4 Marks)
- 9. Find the eccentricity of the ellipse whose one pair of conjugate diameters are y = x + 3 and 3y + 2x + 5 = 0. (4 Marks)
- 10. Identify the points on the region  $R: 0 \le x \le \pi, 0 \le y \le 1$ , where the complex function  $f(z) = \sin z$  has a maximum value. (4 Marks)
- 11. Determine the range and kernel of the linear transformation  $T: \mathbb{R}^3 \to \mathbb{R}^3$  defined by T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z). (5 Marks)
- 12. Determine the volume of the cone cut from the unit solid sphere by the cone  $\phi = \frac{\pi}{3}$ , where  $(\rho, \phi, \theta)$  is any point in space in spherical coordinates. (5 Marks)
- Find the partial differential equation satisfied by the set of all spheres of radius 'r' with their centers on the xy-plane.

  (5 Marks)
- 14. Construct all the distinct possible composition tables for the group (G, \*), where G = {e, a, b, c}, 'e' being the identity element for the binary composition '\*'.
  (5 Marks)
- 15. Prove that all the values of i<sup>-4</sup> are real. (5 Marks)
- 16. Let G be a positively oriented simple closed contour in the complex plane and 'z' is a point inside C. Find the value of  $g(z) = \int_{C} \frac{s^3 + 2s}{(s-z)^3} ds$ . (5 Marks)
- 17. Prove that the function  $f(x) = \sin x$  is uniformly continuous on  $[0, \infty)$ . (5 Marks)
- 18. Sum the series :  $1 + \frac{1}{2}\cos 2\theta \frac{1}{2.4}\cos 4\theta + \frac{1.3}{2.4.6}\cos 6\theta ...$ , where  $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ . (7 Marks)

## 058/21

- Let S₂ denote the set of all symmetric matrices in M(2, ℝ), the set of all 2 × 2 matrices with entires as real numbers. Show that S₂ is a vector subspace of M(2, ℝ) over ℝ. Determine the dimension of S₂ as a vector space over ℝ.
- 20. Show that the real part of  $f(z) = \frac{i}{z^2}$  is harmonic in the xy-plane that doesn't contain the origin. (7 Marks)
- 21. Expand  $f(z) = \frac{-1}{(z-1)(z-2)}$  using Laurent series in the domains  $D_1: 1 < |z| < 2$  and also in  $D_2: |z| > 2$ . (7 Marks)
- 22. Let 'z' be a complex variable and  $f(z) = \begin{cases} \frac{\overline{(z)}^2}{z} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$ . Show that Cauchy-Riemann equations are satisfied at (0, 0), but the function is not differentiable at (0, 0). (7 Marks)
- 23. Evaluate  $\oint_C \vec{F} \cdot d\vec{r}$  if  $\vec{F} = (x + y)i + (2x z)j + (y + z)k$ , where C is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6).
- 24. Determine whether the vector field  $\vec{F} = (\ln x + \sec^2(x+y))i + \left(\sec^2(x+y) + \frac{y}{y^2 + z^2}\right)j + \left(\frac{y}{y^2 + z^2}\right)k$  is conservative and find a potential function for it. (10 Marks)
- 25. Let ' $\rho$ ' be the permutation  $\begin{pmatrix} a & b & c & d & e \\ b & d & e & a & e \end{pmatrix}$ . Find the cyclic group generated by ' $\rho$ ' with permutation multiplication as composition. Also determine the inverses of the elements of this cyclic group. (10 Marks)
- 26. Describe the group  $\mathbb{Z}_{18}$  . Determine all the subgroups of  $\mathbb{Z}_{18}$  and draw the subgroup diagram. (10 Marks)
- 27. Evaluate  $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$ . (10 Marks)
- 28. Evaluate  $\int_{1}^{3} (2x+1) dx$  as the limit of sums using a partition of [1, 3]. (10 Marks)
- 29. Evaluate  $\int_{C} \frac{\cosh \pi z}{z(z^2+1)} dz$ , where C is the circle in the z-plane |z|=2 described in the anticlockwise direction. (10 Marks)
- 30. Solve the differential equation :  $x^3y''' + x^2y'' 2xy' + 2y = 0$  (10 Marks)
- Find two linearly independent series solutions in powers of 'x' of the equation y" -2xy' + 2py = 0, where 'p' is a constant.
- 32. Find the Cauchy's Principal Value of the integral :  $\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 2x + 2} dx$  (10 Marks)