131/2023

Maximum: 100 marks

Time: 1 hour and 30 minutes

- 1. The matrix $\begin{bmatrix} 2 & b \\ 3 & 5 \end{bmatrix}$ is symmetric, if the value of b is :
 - (A) 3

(B) 2

(C) 5

- (D) -3
- 2. If minor of 2 in $\begin{bmatrix} 1 & 2 & 1 \\ 3 & 0 & 4 \\ 5 & 1 & b \end{bmatrix}$ is -5, then the value of b is :
 - (A) 5

(B) 0

(C) -5

(D) -4

- **3.** Coefficient of x^3 in $\left(x + \frac{1}{x}\right)^5$ is:
 - (A) 5

(B) 10

(C) -5

- (D) 1
- 4. $\sin 30 \cos 15 + \cos 30 \sin 15$ equals:
 - (A) $\frac{1}{\sqrt{2}}$

(B) $\frac{1}{\sqrt{3}}$

(C) $\frac{\sqrt{3}}{2}$

- (D) 1
- **5.** If y = 2x and x = ay are perpendicular then a equals:
 - (A) 2

(B) $\frac{1}{2}$

(C) -2

(D) $\frac{-1}{2}$

- 6. $\int (\cos^2 x \sin^2 x) \, dx \text{ equals}:$
 - (A) x + c

(B) $\frac{\sin 2x}{2} + c$

(C) $-\frac{\sin 2x}{2}$

- (D) $\frac{\cos 2x}{2} + c$
- 7. Solution of $\sqrt{x} dy + \sqrt{y} dx = 0$ is:
 - (A) $\sqrt{x} + \sqrt{y} = c$

(B) $\sqrt{x} - \sqrt{y} = c$

(C) $x^{\frac{3}{2}} + y^{\frac{3}{2}} = c$

(D) $\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} = c$

- **8.** Derivative of $\sin^{-1}(\sin x)$ is :
 - (A) 1

(B) $\tan x$

(C) -1

- (D) $\cot x$
- **9.** Slope of normal to the curve $x = 2t^2$, y = 2t at t = 1 is:
 - (A) 2

(B) $\frac{1}{2}$

(C) -2

(D) $\frac{-1}{2}$

- **10.** Which of the following is true?
 - (A) Every differentiable function is continuous
 - (B) Every continuous function is differentiable
 - (C) $\sin\left(\frac{1}{x}\right)$ is continuous at x = 0
 - (D) |x| is differentiable at x = 0
- ${\bf 11.} \quad \hbox{Workability of fresh concrete is measured by :}$
 - (A) Flexure test

(B) Compaction test

(C) Compression test

- (D) Slump test
- 12. Increase in volume of a given mass of sand due to the presence of moisture in it is termed as:
 - (A) Specific gravity

(B) Bulking

(C) Bulk density

(D) Porosity

\mathbf{A}		5		131/2023							
	(D)	To remove exhaust gases from the en	igine								
	(C)	To mix the fuel with air for combusti									
	(B)	To ignite the fuel-air mixture									
	(A)	To compress the fuel-air mixture									
19.	What is th	ne function of the carburetor in a gasol	ine en	gine?							
	(C)	Rotary engine	(D)	Steam engine							
	(A)	Two-stroke engine	(B)	Four-stroke engine							
18.		the following is NOT a type of internal									
	` ,										
	(C) (D)	Diesel engines produce less power									
	(E)	Gasoline engines use less fuel	9								
	(A) (B)	Gasoline engines have higher compre Diesel engines do not use spark plug		rados							
11.		a diesel engine differ from a gasoline d		-							
17.	How door	a dissal angina differ from a gasalina	nain^	in torms of combustion process?							
	(D)	To lubricate the engine									
	(C)	To remove exhaust gases from the en	igine								
	(B)	To ignite the fuel-air mixture									
	(A)	To supply fuel to the engine									
16.	What is th	ne purpose of a spark plug in a four-str	oke in	ternal combustion engine?							
	(C)	97.79 m	(D)	92.58 m							
	(A)	89.75 m	(B)	90.67 m							
15.		cutive readings taken at points A, B, 6, 4.12, 7.42. Reduce level at point A is		ith a dumpy level at a single station are reduce level of the point D is :							
	(C)	0.335 cm	(D)	0.631 cm							
	(A)	1.250 cm	(B)	2.165 cm							
	displacem that the le	nent of the plotted point on the paper in a direction parallel to the chain line given ength of the offset is 25 m and the scale is 10 m to 1 cm:									
14.	An offset	is laid out at 30° from its true	direct	tion on the field. Find the resulting							
	(C)	King closer	(D)	Brick bat							
	(A)	Closer	(B)	Queen closer							

[P.T.O.]

Portion of a brick obtained by cutting a brick length-wise into two portions is termed as:

- 20. Which of the following is the most common fuel used in thermal power plants?
 - (A) Natural gas

(B) Coal

(C) Nuclear fuel

- (D) Wind energy
- 21. A series circuit consists of a coil of a resistance 2 Ω and inductance 64 mH and capacitance of 40 μ F. The Q-factor of the circuit at resonance is :
 - (A) 20Ω

(B) 40Ω

(C) 60Ω

- (D) None of the above
- **22.** A coil consists of a resistance of 100 Ω and an inductance of 200 mH. If an alternating voltage v, given by $v = 200 \sin 500t$ volts is applied across the coil, the current through the coil is:
 - (A) 2 A

(B) 1.5 A

(C) 1 A

- (D) None of the above
- **23.** Two wattmeters are connected to measure the input power to a balanced three-phase. If the instrument readings are 8 kW and 4 kW, the load power factor is :
 - (A) 0.5

(B) 0.866

(C) 0

- (D) 1
- 24. A d.c source having an open-circuit voltage of 24 V and an internal resistance of 1.2 Ω is connected to a load of resistance R_L. The maximum power dissipated by the load is :
 - (A) 100 W

(B) 240 W

(C) 480 W

- (D) 120 W

(A) 9.5A, $\frac{2}{3}\Omega$

(B) 9.5A, 1Ω

(C) $6A, 2\Omega$

(D) None of the above

	(A)	branch	(B)	link					
	(C)	node	(D)	tree					
27 .		pass filter, the attenuation	n is zero through	out the frequency range for which the					
	(A)	Purely inductive	(B)	Purely resistive					
	(C)	Purely capacitive	(D)	Capacitive and inductive					
28.		ed 3 phase star connected ence current will be:	load with $I_R = 5$	< 0, I_{Y} = 5 < -120, I_{B} = 5 < 120 . The					
	(A)	5 A	(B)	10 A					
	(C)	0 A	(D)	None of the above					
29.		density between two pla m ² voltage gradient betwee		y mica of relative permittivity 5 is					
	(A)	200 kV/ m	(B)	20 kV/m					
	(C)	0.2 kV/ m	(D)	2 kV/m					
30.	A straight conductor of 1 m carrying a current of 30 A lies perpendicular to a uniform magnetic field of flux density 0.8 T. The magnitude of force experienced by the conductor is :								
	(A)	0 N	(B)	24 N					
	(C)	10 N	(D)	15 N					
31.				At this frequency, losses in water are The velocity of propagation is:					
	(A)	3×10^8 m/s	(B)	$0.3 \times 10^7 \text{ m/s}$					
	(C)	2×10^8 m/s	(D)	$3.3 \times 10^7 \text{ m/s}$					
32.	The direc		indicates the dir	ection of the instantaneous ———					
	(A)	Power flow	(B)	Electric field					
	(C)	Magnetic field	(D)	None of the above					
33.	_	or uses a dielectric 0.04 mi e dielectric at this voltage is	_	ates at 30 V. The electric field strength					
	(A)	15 KV/m	(B)	30 KV/m					
	(C)	75 KV/m	(D)	750 KV/m					
A			7	131/2023 [P.T.O.]					

26. A point at which two or more elements have a common connection is called:

- **34.** A ceramic capacitor has an effective plate area of 4 cm² separated by 0.1 mm of ceramic of relative permittivity 100. The capacitance of the capacitor is :
 - (A) 3540 pF

(B) 35.4 pF

(C) 354 pF

- (D) 400 pF
- 35. A 10 V battery is connected across a load having a resistance of $20\,\Omega$. The energy dissipated in 2 minutes is :
 - (A) 100 J

(B) 300 J

(C) 500 J

- (D) 600 J
- **36.** Value of voltage V shown in fig is:

- (A) 30 V
- (C) 40 V

- (D) 24 V
- **37.** An e.m.f. of 2kV is induced in a coil when a current of 2 A collapses uniformly to zero in 4ms. The inductance of the coil is :
 - (A) 40 mH

(B) 4 mH

(C) 4 H

- (D) 0.4 H
- **38.** A series RC circuit takes 250 watts at a power factor of 0.5 from a 100 V, 50 Hz supply. The impedance of the circuit is :
 - (A) 50Ω

(B) 20Ω

(C) 10Ω

- (D) None of the above
- **39.** For the circuit shown in fig reading of the ammeter is:

(A) 8.5 A

(B) 3 A

(C) 2.5 A

(D) 5.5 A

- 40. Emitter follower amplifier has:
 - (A) Low input resistance and low output resistance
 - (B) High input resistance and low output resistance
 - (C) Low input resistance and high output resistance
 - (D) High input resistance and high output resistance
- **41.** The factors which affects the operating point stability are:
 - (A) Temperature

- (B) Aging of transistor
- (C) Transistor parameters
- (D) All the above factors
- **42.** When the input to class C amplifier is a sine wave, the output current will flow?
 - (A) Half the cycle

(B) More than half cycle

(C) Less than half cycle

- (D) Full cycle
- **43.** The reduction in voltage gain in the low frequency region of an RC coupled amplifier is due to the presence of :
 - (A) Coupling capacitor

- (B) Output shunt capacitance
- (C) Voltage divider biasing
- (D) Input shunt capacitance
- 44. An amplifier has a voltage gain of 100. To reduce distortion 5% negative feedback is employed. The gain of the amplifier with feedback is:
 - (A) 16.67

(B) 5

(C) 50

- (D) 6.67
- **45.** RC phase shift oscillator employing BJT has angular frequency of oscillation ω , $(n = R_c / R)$:
 - (A) $\frac{1}{RC}$

(B) $\frac{3}{RC} \cdot \frac{1}{\sqrt{6+4n}}$

(C) $\frac{1}{RC} \cdot \frac{1}{\sqrt{29}}$

- (D) $\frac{1}{RC} \cdot \frac{1}{\sqrt{6+4n}}$
- **46.** In the given circuit, $V_a = +4 V$, $V_b = +1V$, R1, R2, R3 and Rf = 1K R1 = 10K, V_o will be:

Differential amplifier using one op-amp

(A) +3V

(B) -3V

(C) +5V

(D) -5V

47 .	An Op-An	np circuit which converts sine wav	e signal int	to square wave signal :					
	(A)	Multivibrator	(B)	Wein bridge oscillator					
	(C)	Schmitt trigger	(D)	Integrator					
48.	FIR filter	s will have transfer function with	:						
	(A)	Only poles	(B)	Only zeroes					
	(C)	Poles and zeroes	(D)	Only constants					
49.	The time period of free running multivibrator output cycle of 555 astable multivibrator is:								
	(A)	1.4/(Ra+Rb)C1	(B)	693/(Ra+2Rb)C1					
	(C)	0.693*(Ra+2Rb)C1	(D)	1.4*(Ra+2Rb)C1					
50 .	_	regulator experiences a 10 μ V chay 2V. What is the line regulation 1	_	s output voltage when its input voltage					
	(A)	$2 \mu \text{V/V}$	(B)	$0.2 \mu \text{V/V}$					
	(C)	5 μV/V	(D)	10 μV/V					
51.	In 8051 microcontroller, what is the contents of register A after the execution of the following code:								
	CLF	RA							
	ORI	L#99H							
	CPI	ιA							
	(A)	66H	(B)	99H					
	(C)	00H	(D)	69H					
52.	A micropi	rocessor with 12 address lines is ca	pable of ad	ldressing:					
	(A)	1024 locations	(B)	2048 locations					
	(C)	3024 locations	(D)	4096 locations					
53.	A single phase full wave mid point thyristor converter uses a 230/200V transformer with centre tap on secondary side. The PIV per thyristor is:								
	(A)	100 V	(B)	141.4 V					
	(C)	200 V	(D)	282.8 V					

54.	Gain modulated field effect transistor is also known as:									
	(A)	BJT	(B)	MOSFET						
	(C)	IGBT	(D)	SCR						
55.	The typical quiescent power dissipation of low power CMOS units is:									
	(A)	2nW	(B)	$0.5~\mu\mathrm{W}$						
	(C)	1 mW	(D)	3 mW						
56.	Find the sampling interval for $\sin(2\pi t)$:									
	(A)	1 sec	(B)	4 sec						
	(C)	$0.5~{ m sec}$	(D)	1.5 sec						
57.	The ideal	SNR of 8 bit ADC is:								
	(A)	49.92 dB	(B)	3 dB						
	(C)	99.84 dB	(D)	1 dB						
58.	In which memory the program data for the currently executing program will be stored:									
	(A)	Auxiliary memory	(B)	RAM						
	(C)	ROM	(D)	Cache memory						
59.	A 200/400 V, 50Hz, two winding transformer is rated at 20 kVA. Its windings are connected as an auto-transformer of rating 200/600V. The power rating of the autotransformer is :									
	(A)	10 kVA	(B)	20 kVA						
	(C)	30 kVA	(D)	40 kVA						
60.		100 V, 50 Hz transformer, 150V and nagnetic circuit will remain unsatur		applied to the primary side. Assuming flux density will change to :						
	(A)	2.25 times	(B)	2 times						
	(C)	0.5 times	(D)	remain unchanged						
61.	A 400/115 V delta/star transformer has 2A third harmonic current in all the three secondary phases. What is the magnitude of third harmonic line current on the primary side?									
	(A)	zero	(B)	0.58 A						
	(C)	1A	(D)	1.73 A						

62. The dc motor, which can provide zero speed regulation at full load without any co									
	(A)	series	(B)	shunt					
	(C)	cumulative compound	differential compound						
63.		s field winding terminals of a diffe	-	ompounded dc generator are externally					
	(A)	increase	(B)	decrease					
	(C)	reduce to residual voltage	(D)	become zero					
64.		c motor produces 40 Nm torque at s 15 A, the developed torque will be		re current is 10 A. When the armature					
	(A)	49 Nm	(B)	60 Nm					
	(C)	90 Nm	(D)	135 Nm					
65.		nator has 12 slots per pole and the winding is:	ne first coil	l lies in slot 1 and 11. Then the pitch					
	(A)	cos 0°	(B)	cos 15°					
	(C)	cos 22.5°	(D)	$\cos 30^{\circ}$					
66.		circuit is unsaturated, the genera		with 5A field current. Assuming the when operating at 40 Hz and 4A field					
	(A)	400 V	(B)	320 V					
	(C)	256 V	(D)	200 V					
67.		at half full load and under excite	_	is connected to an infinite bus. It is n. Then the operation of the generator					
	(A)	close to unity power factor	(B)	low lagging power factor					
	(C)	low leading power factor	(D)	close to zero power factor					
68.	Distribut	ed winding and short chording emp	ployed in A	C machines will result in :					
	(A)	increase in emf and reduction in	harmonics						
	(B)	reduction in emf and increase in harmonics							
	(C)	increase in both emf and harmon	nics						
	(D)	reduction in both emf and harmo	onics						

A			13	131/2023 [P.T.O.]			
	(C)	14.06 km	(D)	39.45 km			
	(A)	46.88 km	(B)	37.83 km			
75.	conductor	is each of resistance $1\Omega/\text{km}$. Calculations are simple consistence of 6% :	lculate the	by a 3 phase transmission line having distance over which load is delivered			
	(C)	String efficiency is increased	(D)	Tension is decreased			
	(A)	Repair can be done easily	(B)	String efficiency is decreased			
74.		g is increased on the OH lines?					
	(C)	27.78%	(D)	23.33%			
	(A)	20.56%	(B)	30.5%			
73.	for rest of 25 days fo	the hours of each day. Calculate or maintenance work in a year:	the annual	, 100 MW for 7 hours and is shut down load factor if the plant is shut down for			
	(C)	120 degrees	(D)	180 degrees			
	(A)	45 degrees	(B)	90 degrees			
72.	-	n, what is the phase difference winding in a capacitor start single		ne currents in the main winding and action motor?			
	(C)	1.56	(D)	0.25			
	(A)	2.24	(B)	1.25			
71.	rated volt	age. If the starting current draws	n is 5 times	irect-On-Line (DOL) switching at the the full load current, and the full load to the full load torque is approximately			
	(C)	Synchronous speed	(D)	None of the above			
	(A)	Stator copper loss	(B)	Rotor copper loss			
70.	The full lo	oad slip of an induction motor dep	ends on :				
	(C)	950 rpm	(D)	1000 rpm			
	(A)	Zero	(B)	50 rpm			
69. A three-phase 415 V, 6 pole, 50 Hz, squirrel cage induction motor is running at a slip The speed of stator magnetic field relative to the rotor magnetic field is :							

76 .	Current chopping occurs in:									
	(A)	Bulk oil circuit breaker	(B)	Air blast circuit breaker						
	(C)	Minimum oil circuit breaker	(D)	All the above						
77.	The equal	area criteria is used to obtain informa	ation a	bout:						
	(A)	transient stability	(B)	swing curves						
	(C)	reactive power limit	(D)	short circuit current limit						
7 8.	The positive sequence and negative sequence voltages are equal in a:									
	(A)	line to line fault	(B)	single line to ground fault						
	(C)	symmetrical fault	(D)	double line to ground fault						
79.	Calculate the plug setting multiplier of a 6A over current relay having a current setting of 150%, connected to a supply circuit through 420/6A CT when the circuit carries a fault current of 4200A:									
	(A)	6.67	(B)	4.6						
	(C)	8	(D)	8.32						
80.	The volta	ge magnitude and voltage phase angle	are sp	ecified in a :						
	(A)	Load bus	(B)	Generator bus						
	(C)	Swing bus	(D)	Voltage controlled bus						
81.	Find the number of revolutions made by a single phase energy meter when used to measure the energy consumption by a 230 V, 0.8 pf, 10A load for 2 hours if the energy meter constant is 750?									
	(A)	1440	(B)	1540						
	(C)	1480	(D)	1380						
82.	scale defl		length	with 10Ω resistance which gives full and 2 cm breadth and is wound for deflection is 55×10^{-6} N-m.						
	(A)	$0.4~\mathrm{Wb/m^2}$	(B)	$0.183~\mathrm{Wb/m^2}$						
	(C)	$0.312~\mathrm{Wb/m^2}$	(D)	$0.451~\mathrm{Wb/m^2}$						
83.	_			when it is subjected to a pressure of the crystal has a thickness of 3mm. 0.16						

- **84.** Which bridge is preferred for measuring the inductance of high Q coils?
 - (A) Maxwell's bridge

(B) Hay's bridge

(C) Anderson bridge

- (D) Wien bridge
- **85.** There are 4 horizontal and 3 vertical tangencies in a lissajous pattern on an oscilloscope. If frequency of the horizontal input is 150 Hz, find the frequency of the vertical input:
 - (A) 120 Hz

(B) 162 Hz

(C) 150 Hz

- (D) 200 Hz
- 86. In real time sampling data acquisition system, the bandwidth is limited to:
 - (A) $\frac{f_s}{4}$

(B) $\frac{f_s}{2}$

(C) $2f_s$

- (D) f_s
- 87. Identify the unity feedback system with transfer, whose characteristic equation has root locus that exist for the entire portion of negative real axis in s-plane:
 - (A) $\frac{k(s^2 + 2s + 1)}{(s+2)^2(s+10)}$

(B) $\frac{k(s^2 + 2s + 2)}{(s+2)^2 (s+10)}$

- (C) $\frac{k(s+2)^2}{s(s^2+2s+2)(s+10)}$
- (D) $\frac{k(s+2)^2}{s(s^2+2s+2)}$
- 88. Which transfer function has the bode gain plot as shown in figure below:

(A) $\frac{k(s+5)}{(s+1)(s+10)(s+20)}$

(B) $\frac{k(s+5)(s+10)}{s(s+1)(s+20)}$

(C) $\frac{k(s+5)}{s(s+1)(s+20)}$

(D) $\frac{k(s+10)(s+20)}{(s+1)(s+5)(s+50)}$

89.	Identify	the n	no. of	roots	of	the	characteristic	e	quation	lie	on	the	imaginary	axis.
	$s^7 + 6s^6 + 11s^5 + 6s^4 + 4s^3 + 24s^2 + 44s + 24 = 0$:													
	(A)	0					(B	3)	2					

90. Determine the approximate gain margin for the system with open loop transfer function $\frac{10}{s\left(s+1\right)^{2}}.$

(D) 6

(A) 40 dB (B) 20 dB (C) -40 dB (D) -20 dB

(C) 4

91. The behaviour of a unity feedback system with open loop transfer function $\frac{40(s+1)^2}{s(s-1)^2(s+10)}$.

(A) Stable(B) Unstable(C) Oscillatory(D) Cannot predict stability.

92. Identify the kind of singular point at the origin of the system $\dot{x}_1 = x_2$ $\dot{x}_2 = \sin{(x_1)} - x_2$

(A) Focus (B) Node

(C) Saddle point (D) Center

93. Suggest which among the following frequency be used to sample the signal given below. $y(t) = 10 \sin(10t) + 2.5 \sin(314t) + 3.76 \cos(1000t)$.

(A) 5 Hz (B) 10 Hz

(C) 200 Hz (D) 1000 Hz

94. The system $\dot{x} = \begin{bmatrix} 1 & 1 \\ -6 & -3 \end{bmatrix} x + \begin{bmatrix} 1 \\ -2 \end{bmatrix} u$ $y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$ is

(A) Stable and completely state controllable

 $(B) \quad Unstable \ but \ completely \ state \ controllable$

(C) Stable but not completely state controllable

(D) Unstable and not completely state controllable

- 95. Compute the time required to settle the unit step response of the system with closed loop transfer function $\frac{1}{s^2 + 4s + 8}$.
 - (A) 0.5s

(B) 2s

(C) 3s

- (D) 4s
- **96.** Identify the natural frequency in the response of the system with closed loop transfer function $\frac{16}{s^2+3s+9}$.
 - (A) 2 rad/s

(B) 3 rad/s

(C) 4 rad/s

- (D) 5 rad/s
- **97.** Determine the transfer function $\frac{Y\left(s\right)}{U\left(s\right)}$ for the system shown below :

- $\text{(A)} \quad \frac{G_1 G_1 G_3 H_2 + G_2 G_3 G_4}{1 G_3 H_2 G_2 G_3 G_4 H_1 G_1 H_1 + G_1 G_3 H_1 H_2}$
- (B) $\frac{G_1 + G_2 G_3 G_4}{1 G_3 H_2 G_2 G_3 G_4 H_1 G_1 H_1}$
- (C) $\frac{G_1 + G_2 G_3 G_4}{1 G_3 H_2 G_2 G_3 G_4 H_1 G_1 H_1 + G_1 G_3 H_1 H_2}$
- (D) $\frac{G_1 G_1 G_3 H_2 + G_2 G_3 G_4}{1 G_3 H_2 G_2 G_3 G_4 H_1 G_1 H_1}$

98. The Nyquist plot of a system, whose open loop transfer function has one pole and two zeros lie to the right of the imaginary axis in s-plane, is shown below. The closed loop system is:

- (A) Stable
- (B) Unstable with one pole to the right of imaginary axis
- (C) Unstable with two pole to the right of imaginary axis
- (D) Unstable with three pole to the right of imaginary axis
- **99.** Suggest a suitable controller / compensator for the system with open loop transfer function $\frac{10}{s(s+1)}$ to achieve a phase margin of 40° at 1 rad/s with a velocity error constant of atleast 10.
 - (A) Proportional Controller
 - (B) PD Controller
 - (C) Lag
 - (D) Lead
- **100.** Identify whether the system exhibits limit cycle, if it exhibits determine the nature and frequency of limit cycle. The nonlinearity is a saturation with unity gain for the linear region and saturation occurs at ± 1 .

- (A) Exhibit stable limit cycle of frequency $\sqrt{2} rad/s$
- (B) Exhibit unstable limit cycle of frequency $\sqrt{2} \, rad \, / \, s$
- (C) Exhibit semi stable limit cycle of frequency $\sqrt{2} \, rad \, / \, s$
- (D) No limit cycle exist

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK